Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States.
School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea.
J Chem Theory Comput. 2021 Apr 13;17(4):2431-2443. doi: 10.1021/acs.jctc.1c00169. Epub 2021 Apr 2.
Molecular modeling and simulations are invaluable tools for polymer science and engineering, which predict physicochemical properties of polymers and provide molecular-level insight into the underlying mechanisms. However, building realistic polymer systems is challenging and requires considerable experience because of great variations in structures as well as length and time scales. This work describes in CHARMM-GUI (http://www.charmm-gui.org/input/polymer), a web-based infrastructure that provides a generalized and automated process to build a relaxed polymer system. not only provides versatile modeling methods to build complex polymer structures, but also generates realistic polymer melt and solution systems through the built-in coarse-grained model and all-atom replacement. The coarse-grained model parametrization is generalized and extensively validated with various experimental data and all-atom simulations. In addition, the capability of for generating relaxed polymer systems is demonstrated by density calculations of 34 homopolymer melt systems, characteristic ratio calculations of 170 homopolymer melt systems, a morphology diagram of poly(styrene--methyl methacrylate) block copolymers, and self-assembly behavior of amphiphilic poly(ethylene oxide--ethylethane) block copolymers in water. We hope that is useful to carry out innovative and novel polymer modeling and simulation research to acquire insight into structures, dynamics, and underlying mechanisms of complex polymer-containing systems.
分子建模和模拟是聚合物科学与工程中非常宝贵的工具,它们可以预测聚合物的物理化学性质,并提供对潜在机制的分子水平的深入了解。然而,构建真实的聚合物体系具有挑战性,并且需要相当多的经验,因为结构以及长度和时间尺度的差异很大。这项工作描述了如何在 CHARMM-GUI(http://www.charmm-gui.org/input/polymer)中,这是一个基于网络的基础架构,提供了一种通用和自动化的过程来构建松弛的聚合物系统。它不仅提供了多种建模方法来构建复杂的聚合物结构,而且还通过内置的粗粒模型和全原子替换生成真实的聚合物熔体和溶液体系。粗粒模型参数化是通用的,并通过各种实验数据和全原子模拟进行了广泛验证。此外,通过对 34 种均聚物熔体体系的密度计算、170 种均聚物熔体体系的特征比计算、聚苯乙烯-甲基丙烯酸甲酯嵌段共聚物的形态图以及两亲性聚(氧化乙烯-乙二胺)嵌段共聚物在水中的自组装行为,展示了 生成松弛聚合物系统的能力。我们希望 对于开展创新性和新颖的聚合物建模和模拟研究有用,以深入了解复杂聚合物体系的结构、动力学和潜在机制。