Suppr超能文献

CIE XYZ 网络:用于低级计算机视觉任务的图像未处理

CIE XYZ Net: Unprocessing Images for Low-Level Computer Vision Tasks.

作者信息

Afifi Mahmoud, Abdelhamed Abdelrahman, Abuolaim Abdullah, Punnappurath Abhijith, Brown Michael S

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):4688-4700. doi: 10.1109/TPAMI.2021.3070580. Epub 2022 Aug 4.

Abstract

Cameras currently allow access to two image states: (i) a minimally processed linear raw-RGB image state (i.e., raw sensor data); or (ii) a highly-processed nonlinear image state (e.g., sRGB). There are many computer vision tasks that work best with a linear image state, such as image deblurring and image dehazing. Unfortunately, the vast majority of images are saved in the nonlinear image state. Because of this, a number of methods have been proposed to "unprocess" nonlinear images back to a raw-RGB state. However, existing unprocessing methods have a drawback because raw-RGB images are sensor-specific. As a result, it is necessary to know which camera produced the sRGB output and use a method or network tailored for that sensor to properly unprocess it. This paper addresses this limitation by exploiting another camera image state that is not available as an output, but it is available inside the camera pipeline. In particular, cameras apply a colorimetric conversion step to convert the raw-RGB image to a device-independent space based on the CIE XYZ color space before they apply the nonlinear photo-finishing. Leveraging this canonical image state, we propose a deep learning framework, CIE XYZ Net, that can unprocess a nonlinear image back to the canonical CIE XYZ image. This image can then be processed by any low-level computer vision operator and re-rendered back to the nonlinear image. We demonstrate the usefulness of the CIE XYZ Net on several low-level vision tasks and show significant gains that can be obtained by this processing framework. Code and dataset are publicly available at https://github.com/mahmoudnafifi/CIE_XYZ_NET.

摘要

目前,相机可提供两种图像状态:(i)经过最少处理的线性原始RGB图像状态(即原始传感器数据);或(ii)经过高度处理的非线性图像状态(例如sRGB)。有许多计算机视觉任务在处理线性图像状态时效果最佳,如图像去模糊和图像去雾。不幸的是,绝大多数图像都是以非线性图像状态保存的。因此,人们提出了许多方法将非线性图像“逆处理”回原始RGB状态。然而,现有的逆处理方法存在一个缺点,即原始RGB图像是特定于传感器的。因此,有必要知道是哪台相机产生了sRGB输出,并使用针对该传感器量身定制的方法或网络来正确地进行逆处理。本文通过利用相机管道中另一种不作为输出提供,但在相机管道内部可用的图像状态来解决这一限制。具体而言,相机在应用非线性后期处理之前,会应用一个比色转换步骤将原始RGB图像转换为基于CIE XYZ颜色空间的与设备无关的空间。利用这种规范图像状态,我们提出了一个深度学习框架,即CIE XYZ网络,它可以将非线性图像逆处理回规范的CIE XYZ图像。然后,任何低级计算机视觉算子都可以处理该图像,并将其重新渲染回非线性图像。我们在几个低级视觉任务上展示了CIE XYZ网络的实用性,并表明通过这个处理框架可以获得显著的收益。代码和数据集可在https://github.com/mahmoudnafifi/CIE_XYZ_NET上公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验