Li Huafeng, Cen Yueliang, Liu Yu, Chen Xun, Yu Zhengtao
IEEE Trans Image Process. 2021;30:4070-4083. doi: 10.1109/TIP.2021.3069339. Epub 2021 Apr 7.
Infrared and visible image fusion has gained ever-increasing attention in recent years due to its great significance in a variety of vision-based applications. However, existing fusion methods suffer from some limitations in terms of the spatial resolutions of both input source images and output fused image, which prevents their practical usage to a great extent. In this paper, we propose a meta learning-based deep framework for the fusion of infrared and visible images. Unlike most existing methods, the proposed framework can accept the source images of different resolutions and generate the fused image of arbitrary resolution just with a single learned model. In the proposed framework, the features of each source image are first extracted by a convolutional network and upscaled by a meta-upscale module with an arbitrary appropriate factor according to practical requirements. Then, a dual attention mechanism-based feature fusion module is developed to combine features from different source images. Finally, a residual compensation module, which can be iteratively adopted in the proposed framework, is designed to enhance the capability of our method in detail extraction. In addition, the loss function is formulated in a multi-task learning manner via simultaneous fusion and super-resolution, aiming to improve the effect of feature learning. And, a new contrast loss inspired by a perceptual contrast enhancement approach is proposed to further improve the contrast of the fused image. Extensive experiments on widely-used fusion datasets demonstrate the effectiveness and superiority of the proposed method. The code of the proposed method is publicly available at https://github.com/yuliu316316/MetaLearning-Fusion.
近年来,红外与可见光图像融合因其在各种基于视觉的应用中具有重大意义而受到越来越多的关注。然而,现有的融合方法在输入源图像和输出融合图像的空间分辨率方面存在一些局限性,这在很大程度上阻碍了它们的实际应用。在本文中,我们提出了一种基于元学习的深度框架用于红外与可见光图像的融合。与大多数现有方法不同,所提出的框架可以接受不同分辨率的源图像,并仅用一个学习到的模型生成任意分辨率的融合图像。在所提出的框架中,首先通过卷积网络提取每个源图像的特征,并根据实际需求由元上采样模块以任意合适的因子进行上采样。然后,开发了一种基于双重注意力机制的特征融合模块来组合来自不同源图像的特征。最后,设计了一个可以在所提出的框架中迭代采用的残差补偿模块来增强我们的方法在细节提取方面的能力。此外,损失函数通过同时进行融合和超分辨率以多任务学习的方式制定,旨在提高特征学习的效果。并且,提出了一种受感知对比度增强方法启发的新的对比度损失,以进一步提高融合图像的对比度。在广泛使用的融合数据集上进行的大量实验证明了所提方法的有效性和优越性。所提方法的代码可在https://github.com/yuliu316316/MetaLearning-Fusion上公开获取。