Suppr超能文献

用于低光图像增强的注意力引导多尺度特征融合网络

Attention-Guided Multi-Scale Feature Fusion Network for Low-Light Image Enhancement.

作者信息

Cui HengShuai, Li Jinjiang, Hua Zhen, Fan Linwei

机构信息

College of Electronic and Communications Engineering, Shandong Technology and Business University, Yantai, China.

Institute of Network Technology, Institute of Computing Technology (ICT), Yantai, China.

出版信息

Front Neurorobot. 2022 Mar 3;16:837208. doi: 10.3389/fnbot.2022.837208. eCollection 2022.

Abstract

Low-light image enhancement has been an important research branch in the field of computer vision. Low-light images are characterized by poor visibility, high noise and low contrast. To improve low-light images generated in low-light environments and night conditions, we propose an Attention-Guided Multi-scale feature fusion network (MSFFNet) for low-light image enhancement for enhancing the contrast and brightness of low-light images. First, to avoid the high cost computation arising from the stacking of multiple sub-networks, our network uses a single encoder and decoder for multi-scale input and output images. Multi-scale input images can make up for the lack of pixel information and loss of feature map information caused by a single input image. The multi-scale output image can effectively monitor the error loss in the image reconstruction process. Second, the Convolutional Block Attention Module (CBAM) is introduced in the encoder part to effectively suppress the noise and color difference generated during feature extraction and further guide the network to refine the color features. Feature calibration module (FCM) is introduced in the decoder section to enhance the mapping expression between channels. Attention fusion module (AFM) is also added to capture contextual information, which is more conducive to recovering image detail information. Last, the cascade fusion module (CFM) is introduced to effectively combine the feature map information under different perceptual fields. Sufficient qualitative and quantitative experiments have been conducted on a variety of publicly available datasets, and the proposed MSFFNet outperforms other low-light enhancement methods in terms of visual effects and metric scores.

摘要

低光图像增强一直是计算机视觉领域的一个重要研究分支。低光图像的特点是能见度差、噪声高和对比度低。为了改善在低光环境和夜间条件下生成的低光图像,我们提出了一种用于低光图像增强的注意力引导多尺度特征融合网络(MSFFNet),以提高低光图像的对比度和亮度。首先,为了避免由于多个子网络堆叠而产生的高计算成本,我们的网络使用单个编码器和解码器来处理多尺度输入和输出图像。多尺度输入图像可以弥补单输入图像导致的像素信息不足和特征图信息丢失。多尺度输出图像可以有效地监测图像重建过程中的误差损失。其次,在编码器部分引入卷积块注意力模块(CBAM),以有效抑制特征提取过程中产生的噪声和色差,并进一步引导网络细化颜色特征。在解码器部分引入特征校准模块(FCM),以增强通道之间的映射表达。还添加了注意力融合模块(AFM)来捕获上下文信息,这更有利于恢复图像细节信息。最后,引入级联融合模块(CFM),以有效组合不同感知域下的特征图信息。我们在各种公开可用的数据集上进行了充分的定性和定量实验,结果表明,所提出的MSFFNet在视觉效果和指标分数方面优于其他低光增强方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d22/8927072/79a51924cb74/fnbot-16-837208-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验