Suppr超能文献

光子李伯晶格中的对称性诱导误差滤波

Symmetry-Induced Error Filtering in a Photonic Lieb Lattice.

作者信息

Chang Yi-Jun, Lu Yong-Heng, Wang Yao, Xu Xiao-Yun, Zhou Wen-Hao, Cui Wen-Hao, Wang Xiao-Wei, Gao Jun, Qiao Lu-Feng, Jin Xian-Min

机构信息

Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China and CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

出版信息

Phys Rev Lett. 2021 Mar 19;126(11):110501. doi: 10.1103/PhysRevLett.126.110501.

Abstract

Quantum computation promises intrinsically parallel information processing capacity by harnessing the superposition and entanglement of quantum states. However, it is still challenging to realize universal quantum computation due that the reliability and scalability are limited by unavoidable noises on qubits. Nontrivial topological properties like quantum Hall phases are found capable of offering protection, but require stringent conditions of topological band gaps and broken time-reversal symmetry. Here, we propose and experimentally demonstrate a symmetry-induced error filtering scheme, showing a more general role of geometry in protection mechanism and applications. We encode qubits in a superposition of two spatial modes on a photonic Lieb lattice. The geometric symmetry endows the system with topological properties featuring a flat band touching, leading to distinctive transmission behaviors of π-phase qubits and 0-phase qubits. The geometry exhibits a significant effect on filtering phase errors, which also enables it to monitor phase deviations in real time. The symmetry-induced error filtering can be a key element for encoding and protecting quantum states, suggesting an emerging field of symmetry-protected universal quantum computation and noisy intermediate-scale quantum technologies.

摘要

量子计算有望通过利用量子态的叠加和纠缠实现本质上的并行信息处理能力。然而,由于量子比特上不可避免的噪声限制了可靠性和可扩展性,实现通用量子计算仍然具有挑战性。像量子霍尔相这样的非平凡拓扑性质能够提供保护,但需要严格的拓扑带隙条件和时间反演对称性破缺。在这里,我们提出并通过实验证明了一种对称性诱导的误差滤波方案,展示了几何结构在保护机制和应用中更普遍的作用。我们在光子利布晶格上的两个空间模式的叠加中编码量子比特。几何对称性赋予系统具有平带接触的拓扑性质,导致π相量子比特和0相量子比特有独特的传输行为。几何结构对滤波相位误差有显著影响,这也使其能够实时监测相位偏差。对称性诱导的误差滤波可以成为编码和保护量子态的关键要素,预示着对称性保护通用量子计算和有噪声的中等规模量子技术这一新兴领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验