Suppr超能文献

细菌钾稳态的分子机制。

Molecular Mechanisms for Bacterial Potassium Homeostasis.

机构信息

Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.

出版信息

J Mol Biol. 2021 Aug 6;433(16):166968. doi: 10.1016/j.jmb.2021.166968. Epub 2021 Mar 30.

Abstract

Potassium ion homeostasis is essential for bacterial survival, playing roles in osmoregulation, pH homeostasis, regulation of protein synthesis, enzyme activation, membrane potential adjustment and electrical signaling. To accomplish such diverse physiological tasks, it is not surprising that a single bacterium typically encodes several potassium uptake and release systems. To understand the role each individual protein fulfills and how these proteins work in concert, it is important to identify the molecular details of their function. One needs to understand whether the systems transport ions actively or passively, and what mechanisms or ligands lead to the activation or inactivation of individual systems. Combining mechanistic information with knowledge about the physiology under different stress situations, such as osmostress, pH stress or nutrient limitation, one can identify the task of each system and deduce how they are coordinated with each other. By reviewing the general principles of bacterial membrane physiology and describing the molecular architecture and function of several bacterial K-transporting systems, we aim to provide a framework for microbiologists studying bacterial potassium homeostasis and the many K-translocating systems that are still poorly understood.

摘要

钾离子稳态对于细菌的生存至关重要,在渗透调节、pH 稳态、蛋白质合成调控、酶激活、膜电位调节和电信号传导中发挥作用。为了完成如此多样化的生理任务,毫不奇怪,单个细菌通常编码几种钾离子摄取和释放系统。为了了解每个单独蛋白质的作用以及这些蛋白质如何协同工作,了解其功能的分子细节非常重要。人们需要了解这些系统是主动运输离子还是被动运输离子,以及是什么机制或配体导致单个系统的激活或失活。将机械信息与不同应激情况下(如渗透压应激、pH 应激或营养限制)的生理学知识相结合,可以确定每个系统的任务,并推断它们彼此之间是如何协调的。通过回顾细菌膜生理学的一般原理,并描述几种细菌 K 转运系统的分子结构和功能,我们旨在为研究细菌钾离子稳态和许多仍知之甚少的 K 转运系统的微生物学家提供一个框架。

相似文献

1
Molecular Mechanisms for Bacterial Potassium Homeostasis.
J Mol Biol. 2021 Aug 6;433(16):166968. doi: 10.1016/j.jmb.2021.166968. Epub 2021 Mar 30.
3
Unappreciated Roles for K Channels in Bacterial Physiology.
Trends Microbiol. 2021 Oct;29(10):942-950. doi: 10.1016/j.tim.2020.11.005. Epub 2020 Dec 5.
5
K+ transport in plants: physiology and molecular biology.
J Plant Physiol. 2009 Mar 15;166(5):447-66. doi: 10.1016/j.jplph.2008.12.009. Epub 2009 Feb 12.
7
[Potassium transport in yeast].
Rev Latinoam Microbiol. 1999 Apr-Jun;41(2):91-103.
8
Potassium transporters in plants--involvement in K+ acquisition, redistribution and homeostasis.
FEBS Lett. 2007 May 25;581(12):2348-56. doi: 10.1016/j.febslet.2007.03.035. Epub 2007 Mar 22.
9
Properties of shaker-type potassium channels in higher plants.
J Membr Biol. 2006 Mar;210(1):1-19. doi: 10.1007/s00232-006-0856-x. Epub 2006 Jun 22.
10
Impact of improved potassium accumulation on pH homeostasis, membrane potential adjustment and survival of Corynebacterium glutamicum.
Biochim Biophys Acta. 2011 Apr;1807(4):444-50. doi: 10.1016/j.bbabio.2011.01.008. Epub 2011 Feb 2.

引用本文的文献

1
Antibacterial activity of promising nanostructured cesium oxide.
Discov Nano. 2025 Aug 18;20(1):140. doi: 10.1186/s11671-025-04327-2.
2
Escherichia coli FocA/B-dependent H and K fluxes: Influence of exogenous versus endogenous formate.
Biophys Rep (N Y). 2025 Aug 8;5(3):100225. doi: 10.1016/j.bpr.2025.100225.
3
Meta-Transcriptomic Response to Copper Corrosion in Drinking Water Biofilms.
Microorganisms. 2025 Jun 30;13(7):1528. doi: 10.3390/microorganisms13071528.
4
Dissecting the contribution of Kup and KimA to Enterococcus faecalis potassium homeostasis.
Sci Rep. 2025 Jul 25;15(1):27027. doi: 10.1038/s41598-025-06573-x.
6
7
Non-redundant cardiolipin synthases shape membrane composition and support stress resilience in .
bioRxiv. 2025 May 19:2025.05.12.653583. doi: 10.1101/2025.05.12.653583.
8
Cholesterol metabolism and intrabacterial potassium homeostasis are intrinsically related in Mycobacterium tuberculosis.
PLoS Pathog. 2025 May 22;21(5):e1013207. doi: 10.1371/journal.ppat.1013207. eCollection 2025 May.
9
Unveiling Derby Survival: Stress Responses to Prolonged Hyperosmotic Stress.
Foods. 2025 Apr 22;14(9):1440. doi: 10.3390/foods14091440.
10
Gut microbiota drives structural variation of exogenous probiotics to enhance colonization.
Gut Microbes. 2025 Dec;17(1):2503371. doi: 10.1080/19490976.2025.2503371. Epub 2025 May 10.

本文引用的文献

1
Unappreciated Roles for K Channels in Bacterial Physiology.
Trends Microbiol. 2021 Oct;29(10):942-950. doi: 10.1016/j.tim.2020.11.005. Epub 2020 Dec 5.
2
Selectivity filter ion binding affinity determines inactivation in a potassium channel.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29968-29978. doi: 10.1073/pnas.2009624117. Epub 2020 Nov 5.
3
Serine phosphorylation regulates the P-type potassium pump KdpFABC.
Elife. 2020 Sep 21;9:e55480. doi: 10.7554/eLife.55480.
5
Inactivation in the potassium channel KcsA.
J Struct Biol X. 2019 Jun 12;3:100009. doi: 10.1016/j.yjsbx.2019.100009. eCollection 2019 Jul-Sep.
6
Cyclic di-AMP Signaling in Bacteria.
Annu Rev Microbiol. 2020 Sep 8;74:159-179. doi: 10.1146/annurev-micro-020518-115943. Epub 2020 Jun 30.
7
Ball-and-chain inactivation in a calcium-gated potassium channel.
Nature. 2020 Apr;580(7802):288-293. doi: 10.1038/s41586-020-2116-0. Epub 2020 Mar 18.
9
Structural basis of proton-coupled potassium transport in the KUP family.
Nat Commun. 2020 Jan 31;11(1):626. doi: 10.1038/s41467-020-14441-7.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验