Suppr超能文献

两种将低亲和力钾通道转化为高亲和力的方法:谷氨酸对枯草芽孢杆菌 KtrCD 的调控。

Two Ways To Convert a Low-Affinity Potassium Channel to High Affinity: Control of Bacillus subtilis KtrCD by Glutamate.

机构信息

Department of General Microbiology, GZMB, Georg August University, Göttingen, Germany.

Department of Genomic and Applied Microbiology, GZMB, Georg August University, Göttingen, Germany.

出版信息

J Bacteriol. 2020 May 27;202(12). doi: 10.1128/JB.00138-20.

Abstract

Potassium and glutamate are the major cation and anion, respectively, in every living cell. Due to the high concentrations of both ions, the cytoplasm of all cells can be regarded as a potassium glutamate solution. This implies that the concentrations of both ions need to be balanced. While the control of potassium uptake by glutamate is well established for eukaryotic cells, much less is known about the mechanisms that link potassium homeostasis to glutamate availability in bacteria. Here, we have discovered that the availability of glutamate strongly decreases the minimal external potassium concentration required for the highly abundant potassium channel KtrCD to accumulate potassium. In contrast, the inducible KtrAB and KimA potassium uptake systems have high apparent affinities for potassium even in the absence of glutamate. Experiments with mutant strains revealed that the KtrD subunit responds to the presence of glutamate. For full activity, KtrD synergistically requires the presence of the regulatory subunit KtrC and of glutamate. The analysis of suppressor mutants of a strain that has KtrCD as the only potassium uptake system and that experiences severe potassium starvation identified a mutation in the ion selectivity filter of KtrD (Gly282 to Val) that similarly results in a strongly glutamate-independent increase of the apparent affinity for potassium. Thus, this work has identified two conditions that increase the apparent affinity of KtrCD for potassium, i.e., external glutamate and the acquisition of a single point mutation in KtrD. In each living cell, potassium is required for maintaining the intracellular pH and for the activity of essential enzymes. Like most other bacteria, possesses multiple low- and high-affinity potassium uptake systems. Their activity is regulated by the second messenger cyclic di-AMP. Moreover, the pools of the most abundant ions potassium and glutamate must be balanced. We report two conditions under which the low-affinity potassium channel KtrCD is able to mediate potassium uptake at low external potassium concentrations: physiologically, the presence of glutamate results in a severely increased potassium uptake. Moreover, this is achieved by a mutation affecting the selectivity filter of the KtrD channel. These results highlight the integration between potassium and glutamate homeostasis in bacteria.

摘要

钾和谷氨酸分别是所有活细胞中的主要阳离子和阴离子。由于这两种离子的浓度都很高,所有细胞的细胞质都可以被视为一种钾谷氨酸溶液。这意味着这两种离子的浓度需要平衡。虽然谷氨酸对真核细胞钾摄取的控制已经得到很好的证实,但对于将钾稳态与细菌中谷氨酸可用性联系起来的机制,人们知之甚少。在这里,我们发现谷氨酸的可用性强烈降低了高度丰富的钾通道 KtrCD 积累钾所需的最小外部钾浓度。相比之下,诱导型 KtrAB 和 KimA 钾摄取系统即使在没有谷氨酸的情况下,对钾也有很高的表观亲和力。利用突变株的实验表明,KtrD 亚基对谷氨酸的存在有反应。对于完全活性,KtrD 与调节亚基 KtrC 和谷氨酸协同作用。对 KtrCD 是唯一钾摄取系统且经历严重钾饥饿的菌株的抑制突变体的分析鉴定出 KtrD 离子选择性过滤器中的一个突变(Gly282 到 Val),同样导致对钾的表观亲和力强烈地不依赖于谷氨酸。因此,这项工作确定了两种可以增加 KtrCD 对钾的表观亲和力的条件,即外部谷氨酸和 KtrD 中的单个点突变的获得。在每个活细胞中,钾对于维持细胞内 pH 和必需酶的活性都是必需的。像大多数其他细菌一样,拥有多种低亲和和高亲和钾摄取系统。它们的活性受第二信使环二腺苷酸(cyclic di-AMP)调节。此外,最丰富的离子钾和谷氨酸的池必须平衡。我们报告了两种条件下,低亲和力钾通道 KtrCD 能够在低外部钾浓度下介导钾摄取:生理上,谷氨酸的存在导致钾摄取严重增加。此外,这是通过影响 KtrD 通道选择性过滤器的突变来实现的。这些结果强调了细菌中钾和谷氨酸稳态之间的整合。

相似文献

引用本文的文献

2
c-di-AMP determines the hierarchical organization of bacterial RCK proteins.环二腺苷酸决定细菌RCK蛋白的层级组织。
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2318666121. doi: 10.1073/pnas.2318666121. Epub 2024 Apr 23.

本文引用的文献

1
A channel profile report of the unusual K channel KtrB.一种异常 K 通道 KtrB 的通道轮廓报告。
J Gen Physiol. 2019 Dec 2;151(12):1357-1368. doi: 10.1085/jgp.201912384. Epub 2019 Oct 17.
2
How RCK domains regulate gating of K+ channels.RCK 结构域如何调节 K+通道的门控。
Biol Chem. 2019 Sep 25;400(10):1303-1322. doi: 10.1515/hsz-2019-0153.
3
Responses of Microorganisms to Osmotic Stress.微生物对渗透胁迫的响应。
Annu Rev Microbiol. 2019 Sep 8;73:313-334. doi: 10.1146/annurev-micro-020518-115504. Epub 2019 Jun 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验