Suppr超能文献

基于 ICP-MS 的离子组学方法鉴别中华蜜蜂蜂蜜的地理来源。

ICP-MS-based ionomics method for discriminating the geographical origin of honey of Apis cerana Fabricius.

机构信息

College of Food Science and Technology, Northwest University, Xi'an 710069, China.

Shaanxi Institute for Food and Drug Control, Keji Rd 5, Xi'an 710065, China.

出版信息

Food Chem. 2021 Aug 30;354:129568. doi: 10.1016/j.foodchem.2021.129568. Epub 2021 Mar 12.

Abstract

The identification of geographical origin is an important factor in evaluating the authenticity of honey. However, at present, there are few studies concerning the honey of Apis cerana Fabricius (A. cerana, Asiatic honeybee). To identify geographical origin, we used two common methods (multi-physicochemical parameters and phenolic chromatographic fingerprints) but achieved only poor identification. To compensate for this shortcoming, we established an ICP-MS-based ionomics method using 18 elements in 27 A. cerana honey samples from three different areas in Shaanxi Province, China. Multivariate analysis showed that significant differences in contents can be used to discriminate the geographical origin of A. cerana honey. The method was further validated using an independent test set of 11 samples with 90.91% accuracy, demonstrating its potential for the identification and prediction of the geographical origin of honey.

摘要

地理来源的鉴定是评估蜂蜜真实性的一个重要因素。然而,目前关于中华蜜蜂(A. cerana,亚洲蜜蜂)的蜂蜜的研究很少。为了鉴定地理来源,我们使用了两种常见的方法(多物理化学参数和酚类色谱指纹图谱),但仅获得了较差的识别结果。为了弥补这一不足,我们使用来自中国陕西省三个不同地区的 27 个中华蜜蜂蜂蜜样本,建立了基于 ICP-MS 的离子组学方法,使用了 18 种元素。多元分析表明,含量的显著差异可用于区分中华蜜蜂蜂蜜的地理来源。该方法进一步通过 11 个独立测试样本集验证,准确率为 90.91%,证明了其用于识别和预测蜂蜜地理来源的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验