Suppr超能文献

SMITER:一个用于 LC-MS/MS 实验模拟的 Python 库。

SMITER-A Python Library for the Simulation of LC-MS/MS Experiments.

机构信息

Department of Chemistry, Biochemistry and Pharmaceutical Sciences (DCBP), University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.

出版信息

Genes (Basel). 2021 Mar 11;12(3):396. doi: 10.3390/genes12030396.

Abstract

SMITER (Synthetic mzML writer) is a Python-based command-line tool designed to simulate liquid-chromatography-coupled tandem mass spectrometry LC-MS/MS runs. It enables the simulation of any biomolecule amenable to mass spectrometry (MS) since all calculations are based on chemical formulas. SMITER features a modular design, allowing for an easy implementation of different noise and fragmentation models. By default, SMITER uses an established noise model and offers several methods for peptide fragmentation, and two models for nucleoside fragmentation and one for lipid fragmentation. Due to the rich Python ecosystem, other modules, e.g., for retention time (RT) prediction, can easily be implemented for the tailored simulation of any molecule of choice. This facilitates the generation of defined gold-standard LC-MS/MS datasets for any type of experiment. Such gold standards, where the ground truth is known, are required in computational mass spectrometry to test new algorithms and to improve parameters of existing ones. Similarly, gold-standard datasets can be used to evaluate analytical challenges, e.g., by predicting co-elution and co-fragmentation of molecules. As these challenges hinder the detection or quantification of co-eluents, a comprehensive simulation can identify and thus, prevent such difficulties before performing actual MS experiments. SMITER allows the creation of such datasets easily, fast, and efficiently.

摘要

SMITER(合成 mzML 写入器)是一个基于 Python 的命令行工具,用于模拟液相色谱 - 串联质谱 LC-MS/MS 运行。由于所有计算都基于化学式,因此它可以模拟任何可用于质谱(MS)的生物分子。SMITER 具有模块化设计,允许轻松实现不同的噪声和碎片化模型。默认情况下,SMITER 使用既定的噪声模型,并提供几种肽碎片化方法,以及两种核苷碎片化模型和一种脂质碎片化模型。由于丰富的 Python 生态系统,其他模块,例如保留时间(RT)预测,可轻松用于任何所需分子的定制模拟。这促进了任何类型实验的定义金标准 LC-MS/MS 数据集的生成。在计算质谱学中,需要这种具有明确真值的金标准来测试新算法并改进现有算法的参数。类似地,金标准数据集可用于评估分析挑战,例如,通过预测分子的共洗脱和共碎片化。由于这些挑战会阻碍共洗脱物的检测或定量,因此全面的模拟可以在进行实际 MS 实验之前识别并因此防止这些困难。SMITER 允许轻松、快速和高效地创建此类数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9797/8000309/10e773fc7bd4/genes-12-00396-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验