Jain Anand, Ahmad Mohd Zamidi, Linkès Audrey, Martin-Gil Violeta, Castro-Muñoz Roberto, Izak Pavel, Sofer Zdeněk, Hintz Werner, Fila Vlastimil
Department of Inorganic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
Faculty of Process and Systems Engineering, Otto-von-Guericke-University, Magdeburg Universitätsplatz 2, 39106 Magdeburg, Germany.
Nanomaterials (Basel). 2021 Mar 8;11(3):668. doi: 10.3390/nano11030668.
This work presents the gas separation evaluation of 6FDA-DAM:DABA (3:1) co-polyimide and its enhanced mixed matrix membranes (MMMs) with graphene oxide (GO) and ZIF-8 (particle size of <40 nm). The 6FDA-copolyimide was obtained through two-stage poly-condensation polymerization, while the ZIF-8 nanoparticles were synthesized using the dry and wet method. The MMMs were preliminarily prepared with 1-4 wt.% GO and 5-15 wt.% ZIF-8 filler loading independently. Based on the best performing GO MMM, the study proceeded with making MMMs based on the mixtures of GO and ZIF-8 with a fixed 1 wt.% GO content (related to the polymer matrix) and varied ZIF-8 loadings. All the materials were characterized thoroughly using TGA, FTIR, XRD, and FESEM. The gas separation was measured with 50:50 vol.% CO:CH binary mixture at 2 bar feed pressure and 25 °C. The pristine 6FDA-copolyimide showed CO permeability () of 147 Barrer and CO/CH selectivity () of 47.5. At the optimum GO loading (1 wt.%), the and were improved by 22% and 7%, respectively. A combination of GO (1 wt.%)/ZIF-8 fillers tremendously improves its ; by 990% for GO/ZIF-8 (5 wt.%) and 1.124% for GO/ZIF-8 (10 wt.%). Regrettably, the MMMs lost their selectivity by 16-55% due to the non-selective filler-polymer interfacial voids. However, the hybrid MMM performances still resided close to the 2019 upper bound and showed good performance stability when tested at different feed pressure conditions.
本文介绍了6FDA-DAM:DABA(3:1)共聚酰亚胺及其与氧化石墨烯(GO)和ZIF-8(粒径<40 nm)增强的混合基质膜(MMM)的气体分离性能评估。6FDA-共聚酰亚胺通过两步缩聚聚合获得,而ZIF-8纳米颗粒采用干湿法合成。MMM分别以1-4 wt.%的GO和5-15 wt.%的ZIF-8填料负载量初步制备。基于性能最佳的GO MMM,该研究继续制备基于GO和ZIF-8混合物的MMM,其中GO含量固定为1 wt.%(相对于聚合物基质),ZIF-8负载量不同。所有材料均使用TGA、FTIR、XRD和FESEM进行了全面表征。在2 bar进料压力和25°C下,用50:50 vol.%的CO:CH二元混合物测量气体分离性能。原始的6FDA-共聚酰亚胺显示出147 Barrer的CO渗透率()和47.5的CO/CH选择性()。在最佳GO负载量(1 wt.%)下,和分别提高了22%和7%。GO(1 wt.%)/ZIF-8填料的组合极大地提高了其;对于GO/ZIF-8(5 wt.%)提高了990%,对于GO/ZIF-8(10 wt.%)提高了1.124%。遗憾的是,由于非选择性的填料-聚合物界面空隙,MMM的选择性损失了16-55%。然而,混合MMM的性能仍接近2019年的上限,并且在不同进料压力条件下测试时表现出良好的性能稳定性。