Suppr超能文献

最大相关性最小冗余丢弃与信息核决定点过程。

Maximum Relevance Minimum Redundancy Dropout with Informative Kernel Determinantal Point Process.

机构信息

INESC TEC and Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal.

Department of Computer Science, University of Tulsa, Tulsa, OK 74104, USA.

出版信息

Sensors (Basel). 2021 Mar 6;21(5):1846. doi: 10.3390/s21051846.

Abstract

In recent years, deep neural networks have shown significant progress in computer vision due to their large generalization capacity; however, the overfitting problem ubiquitously threatens the learning process of these highly nonlinear architectures. Dropout is a recent solution to mitigate overfitting that has witnessed significant success in various classification applications. Recently, many efforts have been made to improve the Standard dropout using an unsupervised merit-based semantic selection of neurons in the latent space. However, these studies do not consider the task-relevant information quality and quantity and the diversity of the latent kernels. To solve the challenge of dropping less informative neurons in deep learning, we propose an efficient end-to-end dropout algorithm that selects the most informative neurons with the highest correlation with the target output considering the sparsity in its selection procedure. First, to promote activation diversity, we devise an approach to select the most diverse set of neurons by making use of determinantal point process (DPP) sampling. Furthermore, to incorporate task specificity into deep latent features, a mutual information (MI)-based merit function is developed. Leveraging the proposed MI with DPP sampling, we introduce the novel DPPMI dropout that adaptively adjusts the retention rate of neurons based on their contribution to the neural network task. Empirical studies on real-world classification benchmarks including, MNIST, SVHN, CIFAR10, CIFAR100, demonstrate the superiority of our proposed method over recent state-of-the-art dropout algorithms in the literature.

摘要

近年来,由于深度神经网络具有较大的泛化能力,因此在计算机视觉领域取得了显著的进展;然而,过拟合问题普遍威胁着这些高度非线性架构的学习过程。随机失活是一种减轻过拟合的最新方法,在各种分类应用中取得了显著的成功。最近,许多研究都致力于使用无监督的基于优点的语义选择方法,在潜在空间中选择神经元来改进标准随机失活。然而,这些研究并没有考虑到任务相关的信息质量和数量以及潜在核的多样性。为了解决深度学习中丢失信息量较少的神经元的问题,我们提出了一种高效的端到端随机失活算法,该算法考虑到选择过程中的稀疏性,选择与目标输出相关性最高的最具信息量的神经元。首先,为了促进激活多样性,我们设计了一种通过使用决定点过程 (DPP) 采样选择最具多样性的神经元集的方法。此外,为了将任务特异性纳入深度潜在特征中,我们开发了一种基于互信息 (MI) 的优点函数。利用我们提出的基于 MI 的 DPP 采样,我们引入了新的 DPPMI 随机失活,该方法根据神经元对神经网络任务的贡献自适应调整神经元的保留率。在包括 MNIST、SVHN、CIFAR10、CIFAR100 在内的真实分类基准上的实证研究表明,与文献中的最新先进的随机失活算法相比,我们提出的方法具有优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7cb/7961777/21ebb36f4758/sensors-21-01846-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验