Jain Barsha, Velpula Ravi Teja, Patel Moulik, Sadaf Sharif Md, Nguyen Hieu Pham Trung
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
Centre Energie, Matériaux et TéléCommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada.
Micromachines (Basel). 2021 Mar 21;12(3):334. doi: 10.3390/mi12030334.
To prevent electron leakage in deep ultraviolet (UV) AlGaN light-emitting diodes (LEDs), Al-rich -type AlGaN electron blocking layer (EBL) has been utilized. However, the conventional EBL can mitigate the electron overflow only up to some extent and adversely, holes are depleted in the EBL due to the formation of positive sheet polarization charges at the heterointerface of the last quantum barrier (QB)/EBL. Subsequently, the hole injection efficiency of the LED is severely limited. In this regard, we propose an EBL-free AlGaN deep UV LED structure using graded staircase quantum barriers (GSQBs) instead of conventional QBs without affecting the hole injection efficiency. The reported structure exhibits significantly reduced thermal velocity and mean free path of electrons in the active region, thus greatly confines the electrons over there and tremendously decreases the electron leakage into the -region. Moreover, such specially designed QBs reduce the quantum-confined Stark effect in the active region, thereby improves the electron and hole wavefunctions overlap. As a result, both the internal quantum efficiency and output power of the GSQB structure are ~2.13 times higher than the conventional structure at 60 mA. Importantly, our proposed structure exhibits only ~20.68% efficiency droop during 0-60 mA injection current, which is significantly lower compared to the regular structure.
为了防止深紫外(UV)氮化铝镓(AlGaN)发光二极管(LED)中的电子泄漏,人们采用了富铝型AlGaN电子阻挡层(EBL)。然而,传统的EBL只能在一定程度上减轻电子溢出,而且不利的是,由于在最后一个量子势垒(QB)/EBL的异质界面处形成了正的面极化电荷,空穴在EBL中被耗尽。随后,LED的空穴注入效率受到严重限制。在这方面,我们提出了一种无EBL的AlGaN深紫外LED结构,该结构使用渐变阶梯量子势垒(GSQB)代替传统的QB,而不影响空穴注入效率。所报道的结构在有源区表现出显著降低的电子热速度和平均自由程,从而极大地限制了有源区的电子,并极大地减少了电子泄漏到 - 区域。此外,这种特殊设计的QB降低了有源区的量子限制斯塔克效应,从而改善了电子和空穴波函数的重叠。结果,在60 mA时,GSQB结构的内量子效率和输出功率均比传统结构高约2.13倍。重要的是,我们提出的结构在0 - 60 mA注入电流期间仅表现出约20.68%的效率 droop,与常规结构相比显著更低。