Suppr超能文献

多组学数据分析揭示代谢生物标志物的分子网络和基因调控因子。

Multi-Omics Data Analysis Uncovers Molecular Networks and Gene Regulators for Metabolic Biomarkers.

机构信息

Translational Sciences Section, Jonsson Comprehensive Cancer Center, School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Biomolecules. 2021 Mar 10;11(3):406. doi: 10.3390/biom11030406.

Abstract

The insulin-like growth factors (IGFs)/insulin resistance (IR) axis is the major metabolic hormonal pathway mediating the biologic mechanism of several complex human diseases, including type 2 diabetes (T2DM) and cancers. The genomewide association study (GWAS)-based approach has neither fully characterized the phenotype variation nor provided a comprehensive understanding of the regulatory biologic mechanisms. We applied systematic genomics to integrate our previous GWAS data for IGF-I and IR with multi-omics datasets, e.g., whole-blood expression quantitative loci, molecular pathways, and gene network, to capture the full range of genetic functionalities associated with IGF-I/IR and key drivers (KDs) in gene-regulatory networks. We identified both shared (e.g., T2DM, lipid metabolism, and estimated glomerular filtration signaling) and IR-specific (e.g., mechanistic target of rapamycin, phosphoinositide 3-kinases, and erb-b2 receptor tyrosine kinase 4 signaling) molecular biologic processes of IGF-I/IR axis regulation. Next, by using tissue-specific gene-gene interaction networks, we identified both well-established (e.g., and ) and novel (e.g., , , and ) KDs in the IGF-I/IR-associated subnetworks. Our results, if validated in additional genomic studies, may provide robust, comprehensive insights into the mechanisms of IGF-I/IR regulation and highlight potential novel genetic targets as preventive and therapeutic strategies for the associated diseases, e.g., T2DM and cancers.

摘要

胰岛素样生长因子 (IGFs)/胰岛素抵抗 (IR) 轴是介导多种复杂人类疾病(包括 2 型糖尿病 (T2DM) 和癌症)生物学机制的主要代谢激素途径。基于全基因组关联研究 (GWAS) 的方法既不能完全描述表型变异,也不能全面了解调节生物学机制。我们应用系统基因组学将我们之前关于 IGF-I 和 IR 的 GWAS 数据与多组学数据集(例如全血表达定量基因座、分子途径和基因网络)进行整合,以捕获与 IGF-I/IR 相关的全基因组功能以及基因调控网络中的关键驱动因素 (KDs)。我们确定了 IGF-I/IR 轴调节的共享(例如,T2DM、脂质代谢和估计的肾小球滤过信号)和 IR 特异性(例如,雷帕霉素的机制靶标、磷酸肌醇 3-激酶和 erb-b2 受体酪氨酸激酶 4 信号)分子生物学过程。接下来,通过使用组织特异性基因-基因相互作用网络,我们在 IGF-I/IR 相关子网络中鉴定了已建立的(例如,和)和新的(例如,,,和)KDs。如果在其他基因组研究中得到验证,我们的结果可能会为 IGF-I/IR 调节的机制提供强大、全面的见解,并突出潜在的新遗传靶点,作为相关疾病(例如 T2DM 和癌症)的预防和治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca34/8001935/d5ad7aae8420/biomolecules-11-00406-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验