Suppr超能文献

一种用于传感器网络中混合RSS和AOA目标定位的二阶锥规划估计器

An SOCP Estimator for Hybrid RSS and AOA Target Localization in Sensor Networks.

作者信息

Costa Marcelo Salgueiro, Tomic Slavisa, Beko Marko

机构信息

Cognitive and People-Centric Computing Labs (COPELABS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.

Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal.

出版信息

Sensors (Basel). 2021 Mar 3;21(5):1731. doi: 10.3390/s21051731.

Abstract

This work addresses the problem of target localization in three-dimensional wireless sensor networks (WSNs). The proposed algorithm is based on a hybrid system that employs angle of arrival (AOA) and received signal strength (RSS) measurements, where the target's transmit power is considered as an unknown parameter. Although both cases of a known and unknown target's transmit power have been addressed in the literature, most of the existing approaches for unknown transmit power are either carried out recursively, or require a high computational cost. This results in an increased execution time of these algorithms, which we avoid in this work by proposing a single-iteration solution with moderate computational complexity. By exploiting the measurement models, a non-convex least squares (LS) estimator is derived first. Then, to tackle its nonconvexity, we resort to second-order cone programming (SOCP) relaxation techniques to transform the non-convex estimator into a convex one. Additionally, to make the estimator tighter, we exploit the angle between two vectors by using the definition of their inner product, which arises naturally from the derivation steps that are taken. The proposed method not only matches the performance of a computationally more complex state-of-the-art method, but it outperforms it for small . This result is of a significant value in practice, since one desires to localize the target using the least number of anchor nodes as possible due to network costs.

摘要

这项工作解决了三维无线传感器网络(WSN)中的目标定位问题。所提出的算法基于一种混合系统,该系统采用到达角(AOA)和接收信号强度(RSS)测量,其中目标的发射功率被视为一个未知参数。尽管文献中已经讨论了目标发射功率已知和未知这两种情况,但大多数针对未知发射功率的现有方法要么是递归执行的,要么需要很高的计算成本。这导致这些算法的执行时间增加,而在这项工作中,我们通过提出一种具有适度计算复杂度的单迭代解决方案来避免这种情况。通过利用测量模型,首先推导了一个非凸最小二乘(LS)估计器。然后,为了解决其非凸性问题,我们采用二阶锥规划(SOCP)松弛技术将非凸估计器转换为凸估计器。此外,为了使估计器更精确,我们利用两个向量之间的夹角,这是从所采取的推导步骤中自然产生的,通过使用它们内积的定义来实现。所提出的方法不仅与计算复杂度更高的现有方法的性能相匹配,而且在小 时优于它。由于网络成本的原因,人们希望使用尽可能少的锚节点来定位目标,因此这一结果在实际中具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99f0/7959150/627cc84f9a83/sensors-21-01731-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验