The State Key Laboratory of High-Performance Computing, College of Computer, National University of Defense Technology, Changsha 410000, China.
Sensors (Basel). 2021 Mar 3;21(5):1751. doi: 10.3390/s21051751.
Hyperspectral image (HSI) classification is the subject of intense research in remote sensing. The tremendous success of deep learning in computer vision has recently sparked the interest in applying deep learning in hyperspectral image classification. However, most deep learning methods for hyperspectral image classification are based on convolutional neural networks (CNN). Those methods require heavy GPU memory resources and run time. Recently, another deep learning model, the transformer, has been applied for image recognition, and the study result demonstrates the great potential of the transformer network for computer vision tasks. In this paper, we propose a model for hyperspectral image classification based on the transformer, which is widely used in natural language processing. Besides, we believe we are the first to combine the metric learning and the transformer model in hyperspectral image classification. Moreover, to improve the model classification performance when the available training samples are limited, we use the 1-D convolution and Mish activation function. The experimental results on three widely used hyperspectral image data sets demonstrate the proposed model's advantages in accuracy, GPU memory cost, and running time.
高光谱图像(HSI)分类是遥感领域的研究热点。深度学习在计算机视觉领域的巨大成功最近激发了人们将深度学习应用于高光谱图像分类的兴趣。然而,大多数用于高光谱图像分类的深度学习方法都是基于卷积神经网络(CNN)的。这些方法需要大量的 GPU 内存资源和运行时间。最近,另一种深度学习模型——转换器,已经被应用于图像识别,研究结果表明转换器网络在计算机视觉任务中具有巨大的潜力。在本文中,我们提出了一种基于在自然语言处理中广泛应用的转换器的高光谱图像分类模型。此外,我们相信我们是第一个将度量学习和转换器模型结合应用于高光谱图像分类的。此外,为了提高在可用训练样本有限的情况下的模型分类性能,我们使用了一维卷积和 Mish 激活函数。在三个广泛使用的高光谱图像数据集上的实验结果表明,所提出的模型在准确性、GPU 内存成本和运行时间方面具有优势。