文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

碳纳米管和梯型聚倍半硅氧烷改性聚乳酸非织造布。

Modification of Polylactide Nonwovens with Carbon Nanotubes and Ladder Poly(silsesquioxane).

机构信息

Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.

出版信息

Molecules. 2021 Mar 3;26(5):1353. doi: 10.3390/molecules26051353.


DOI:10.3390/molecules26051353
PMID:33802604
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7961909/
Abstract

Electrospun nonwovens of poly(L-lactide) (PLLA) modified with multiwall carbon nanotubes (MWCNT) and linear ladder-like poly(silsesquioxane) with methoxycarbonyl side groups (LPSQ-COOMe) were obtained. MWCNT and LPSQ-COOMe were added to the polymer solution before the electrospinning. In addition, nonwovens of PLLA grafted to modified MWCNT were electrospun. All modified nonwovens exhibited higher tensile strength than the neat PLA nonwoven. The addition of 10 wt.% of LPSQ-COOMe and 0.1 wt.% of MWCNT to PLLA increased the tensile strength of the nonwovens 2.4 times, improving also the elongation at the maximum stress.

摘要

聚(L-丙交酯)(PLLA)的电纺非织造布经多壁碳纳米管(MWCNT)和带有甲氧基羰基侧基的线性梯型聚(硅倍半氧烷)(LPSQ-COOMe)改性后得到。MWCNT 和 LPSQ-COOMe 在静电纺丝前加入到聚合物溶液中。此外,还对接枝到改性 MWCNT 的 PLLA 进行了静电纺丝。所有改性的非织造布的拉伸强度均高于纯 PLA 非织造布。在 PLLA 中添加 10wt%的 LPSQ-COOMe 和 0.1wt%的 MWCNT 可使非织造布的拉伸强度提高 2.4 倍,同时也提高了最大应力下的伸长率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a59/7961909/0489616685f4/molecules-26-01353-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a59/7961909/717b768f37c0/molecules-26-01353-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a59/7961909/473671113a01/molecules-26-01353-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a59/7961909/c30c230a1a8d/molecules-26-01353-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a59/7961909/69be0823dd9f/molecules-26-01353-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a59/7961909/0489616685f4/molecules-26-01353-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a59/7961909/717b768f37c0/molecules-26-01353-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a59/7961909/473671113a01/molecules-26-01353-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a59/7961909/c30c230a1a8d/molecules-26-01353-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a59/7961909/69be0823dd9f/molecules-26-01353-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a59/7961909/0489616685f4/molecules-26-01353-g005.jpg

相似文献

[1]
Modification of Polylactide Nonwovens with Carbon Nanotubes and Ladder Poly(silsesquioxane).

Molecules. 2021-3-3

[2]
Electrically conductive crystalline polylactide nonwovens obtained by electrospinning and modification with multiwall carbon nanotubes.

Int J Biol Macromol. 2023-7-1

[3]
Functional polyhedral oligomeric silsesquioxane reinforced poly(lactic acid) nanocomposites for biomedical applications.

J Mech Behav Biomed Mater. 2018-11-19

[4]
Nanocomposites based on poly-D,L-lactide and multiwall carbon nanotubes.

Biomol Eng. 2007-2

[5]
Reinforcing Effects of Poly(D-Lactide)-g-Multiwall Carbon Nanotubes on Polylactide Nanocomposites.

J Nanosci Nanotechnol. 2015-10

[6]
Novel poly(L-lactide) PLLA/SWNTs nanocomposites for biomedical applications: material characterization and biocompatibility evaluation.

J Biomater Sci Polym Ed. 2010-6-21

[7]
From implantation to degradation - are poly (l-lactide)/multiwall carbon nanotube composite materials really cytocompatible?

Nanomedicine. 2014-7

[8]
Electrospinning of poly(lactic acid)/polyhedral oligomeric silsesquioxane nanocomposites and their potential in chondrogenic tissue regeneration.

J Biomater Sci Polym Ed. 2014

[9]
Influence of purified multiwalled carbon nanotubes on the mechanical and morphological behavior in poly (L-lactic acid) matrix.

J Mech Behav Biomed Mater. 2016-6

[10]
Poly(L-lactide) nanocomposites containing poly(D-lactide) grafted nanohydroxyapatite with improved interfacial adhesion via stereocomplexation.

J Mech Behav Biomed Mater. 2017-10-31

引用本文的文献

[1]
Polylactide-Based Materials: Synthesis and Biomedical Applications.

Molecules. 2023-2-1

[2]
Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field.

Pharmaceutics. 2021-8-26

[3]
Phase Structure and Properties of Ternary Polylactide/Poly(methyl methacrylate)/Polysilsesquioxane Blends.

Polymers (Basel). 2021-3-26

本文引用的文献

[1]
Super tough poly(lactic acid) blends: a comprehensive review.

RSC Adv. 2020-4-1

[2]
Degradation of Plasticized PLA Electrospun Fiber Mats: Morphological, Thermal and Crystalline Evolution.

Polymers (Basel). 2020-12-13

[3]
Electrospinning of Cellulose Nanocrystal-Reinforced Polyurethane Fibrous Mats.

Polymers (Basel). 2020-5-1

[4]
PLA/β-CD-based fibres loaded with quercetin as potential antibacterial dressing materials.

Colloids Surf B Biointerfaces. 2020-6

[5]
Electrospun Functional Materials toward Food Packaging Applications: A Review.

Nanomaterials (Basel). 2020-1-15

[6]
Bio-based polymer nanofiber with siliceous sponge spicules prepared by electrospinning: Preparation, characterisation, and functionalisation.

Mater Sci Eng C Mater Biol Appl. 2019-11-28

[7]
Effect of hydroxyapatite concentration and size on morpho-mechanical properties of PLA-based randomly oriented and aligned electrospun nanofibrous mats.

J Mech Behav Biomed Mater. 2020-1

[8]
Carbon Nanotube Assembly and Integration for Applications.

Nanoscale Res Lett. 2019-7-1

[9]
Novel Electrospun Polylactic Acid Nanocomposite Fiber Mats with Hybrid Graphene Oxide and Nanohydroxyapatite Reinforcements Having Enhanced Biocompatibility.

Polymers (Basel). 2016-8-8

[10]
Poly(lactic acid) Composites Containing Carbon-Based Nanomaterials: A Review.

Polymers (Basel). 2017-7-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索