文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有增强生物相容性的、含有氧化石墨烯和纳米羟基磷灰石杂化增强剂的新型电纺聚乳酸纳米复合纤维垫

Novel Electrospun Polylactic Acid Nanocomposite Fiber Mats with Hybrid Graphene Oxide and Nanohydroxyapatite Reinforcements Having Enhanced Biocompatibility.

作者信息

Liu Chen, Wong Hoi Man, Yeung Kelvin Wai Kwok, Tjong Sie Chin

机构信息

Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

Department of Orthopedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.

出版信息

Polymers (Basel). 2016 Aug 8;8(8):287. doi: 10.3390/polym8080287.


DOI:10.3390/polym8080287
PMID:30974562
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6432366/
Abstract

Graphene oxide (GO) and a nanohydroxyapatite rod (nHA) of good biocompatibility were incorporated into polylactic acid (PLA) through electrospinning to form nanocomposite fiber scaffolds for bone tissue engineering applications. The preparation, morphological, mechanical and thermal properties, as well as biocompatibility of electrospun PLA scaffolds reinforced with GO and/or nHA were investigated. Electron microscopic examination and image analysis showed that GO and nHA nanofillers refine the diameter of electrospun PLA fibers. Differential scanning calorimetric tests showed that nHA facilitates the crystallization process of PLA, thereby acting as a nucleating site for the PLA molecules. Tensile test results indicated that the tensile strength and elastic modulus of the electrospun PLA mat can be increased by adding 15 wt % nHA. The hybrid nanocomposite scaffold with 15 wt % nHA and 1 wt % GO fillers exhibited higher tensile strength amongst the specimens investigated. Furthermore, nHA and GO nanofillers enhanced the water uptake of PLA. Cell cultivation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase tests demonstrated that all of the nanocomposite scaffolds exhibit higher biocompatibility than the pure PLA mat, particularly for the scaffold with 15 wt % nHA and 1 wt % GO. Therefore, the novel electrospun PLA nanocomposite scaffold with 15 wt % nHA and 1 wt % GO possessing a high tensile strength and modulus, as well as excellent cell proliferation is a potential biomaterial for bone tissue engineering applications.

摘要

通过静电纺丝将具有良好生物相容性的氧化石墨烯(GO)和纳米羟基磷灰石棒(nHA)掺入聚乳酸(PLA)中,以形成用于骨组织工程应用的纳米复合纤维支架。研究了用GO和/或nHA增强的静电纺PLA支架的制备、形态、力学和热性能以及生物相容性。电子显微镜检查和图像分析表明,GO和nHA纳米填料细化了静电纺PLA纤维的直径。差示扫描量热测试表明,nHA促进了PLA的结晶过程,从而作为PLA分子的成核位点。拉伸试验结果表明,添加15 wt%的nHA可提高静电纺PLA垫的拉伸强度和弹性模量。在研究的样品中,含有15 wt% nHA和1 wt% GO填料的混合纳米复合支架表现出更高的拉伸强度。此外,nHA和GO纳米填料提高了PLA的吸水率。细胞培养、3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑溴盐(MTT)和碱性磷酸酶测试表明,所有纳米复合支架均比纯PLA垫表现出更高的生物相容性,特别是对于含有15 wt% nHA和1 wt% GO的支架。因此,具有15 wt% nHA和1 wt% GO的新型静电纺PLA纳米复合支架具有高拉伸强度和模量以及优异的细胞增殖能力,是骨组织工程应用的潜在生物材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/1cafcc18f46d/polymers-08-00287-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/cb31ffaee04b/polymers-08-00287-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/4866b7e59488/polymers-08-00287-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/b8b3c3fcd4de/polymers-08-00287-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/55fa87607dab/polymers-08-00287-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/e8358ac97ac2/polymers-08-00287-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/467aaa65d606/polymers-08-00287-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/ac21742f1f9e/polymers-08-00287-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/9717840a2940/polymers-08-00287-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/06070b9026e8/polymers-08-00287-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/861ac498f4c4/polymers-08-00287-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/ab4764d7c3e9/polymers-08-00287-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/37cedb4d9c47/polymers-08-00287-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/1cafcc18f46d/polymers-08-00287-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/cb31ffaee04b/polymers-08-00287-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/4866b7e59488/polymers-08-00287-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/b8b3c3fcd4de/polymers-08-00287-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/55fa87607dab/polymers-08-00287-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/e8358ac97ac2/polymers-08-00287-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/467aaa65d606/polymers-08-00287-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/ac21742f1f9e/polymers-08-00287-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/9717840a2940/polymers-08-00287-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/06070b9026e8/polymers-08-00287-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/861ac498f4c4/polymers-08-00287-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/ab4764d7c3e9/polymers-08-00287-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/37cedb4d9c47/polymers-08-00287-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f587/6432366/1cafcc18f46d/polymers-08-00287-g013.jpg

相似文献

[1]
Novel Electrospun Polylactic Acid Nanocomposite Fiber Mats with Hybrid Graphene Oxide and Nanohydroxyapatite Reinforcements Having Enhanced Biocompatibility.

Polymers (Basel). 2016-8-8

[2]
Development and Antibacterial Performance of Novel Polylactic Acid-Graphene Oxide-Silver Nanoparticle Hybrid Nanocomposite Mats Prepared By Electrospinning.

ACS Biomater Sci Eng. 2017-3-13

[3]
Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering.

Colloids Surf B Biointerfaces. 2012-9-18

[4]
Synthetic Biodegradable Aliphatic Polyester Nanocomposites Reinforced with Nanohydroxyapatite and/or Graphene Oxide for Bone Tissue Engineering Applications.

Nanomaterials (Basel). 2019-4-10

[5]
Preparation and study of the antibacterial ability of graphene oxide-catechol hybrid polylactic acid nanofiber mats.

Colloids Surf B Biointerfaces. 2018-9-5

[6]
The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.

J Mech Behav Biomed Mater. 2016-1

[7]
Development of new biocompatible 3D printed graphene oxide-based scaffolds.

Mater Sci Eng C Mater Biol Appl. 2019-12-24

[8]
Multifunctional poly(glycolic acid-co-propylene fumarate) electrospun fibers reinforced with graphene oxide and hydroxyapatite nanorods.

J Mater Chem B. 2017-6-14

[9]
Incorporation of graphene oxide as a coupling agent in a 3D printed polylactic acid/hardystonite nanocomposite scaffold for bone tissue regeneration applications.

Int J Biol Macromol. 2023-12-31

[10]
3D printed TPMS structural PLA/GO scaffold: Process parameter optimization, porous structure, mechanical and biological properties.

J Mech Behav Biomed Mater. 2023-6

引用本文的文献

[1]
Modulating cell adhesion and infiltration in advanced scaffold designs based on PLLA fibers with rGO and MXene (TiCT ).

Mater Today Bio. 2025-4-21

[2]
AI-Optimized Lattice Structures for Biomechanics Scaffold Design.

Biomimetics (Basel). 2025-2-1

[3]
[Applications and prospects of graphene and its derivatives in bone repair].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2025-1-15

[4]
Nanostructures in Orthopedics: Advancing Diagnostics, Targeted Therapies, and Tissue Regeneration.

Materials (Basel). 2024-12-17

[5]
Functionalization of 3D printed poly(lactic acid)/graphene oxide/β-tricalcium phosphate (PLA/GO/TCP) scaffolds for bone tissue regeneration application.

RSC Adv. 2024-12-17

[6]
Highly Porous 3D Nanofibrous Scaffold of Polylactic Acid/Polyethylene Glycol/Calcium Phosphate for Bone Regeneration by a Two-Step Solution Blow Spinning (SBS) Facile Route.

Polymers (Basel). 2024-10-29

[7]
Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration.

Biology (Basel). 2024-4-2

[8]
Non-Woven Fibrous Polylactic Acid/Hydroxyapatite Nanocomposites Obtained via Solution Blow Spinning: Morphology, Thermal and Mechanical Behavior.

Nanomaterials (Basel). 2024-1-15

[9]
Microbial synthesis of titanium dioxide nanoparticles and their importance in wastewater treatment and antimicrobial activities: a review.

Front Microbiol. 2023-10-16

[10]
Advances in Biomedical Applications of Solution Blow Spinning.

Int J Mol Sci. 2023-9-29

本文引用的文献

[1]
Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies.

Compr Rev Food Sci Food Saf. 2010-9

[2]
In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide.

J Mater Chem B. 2013-1-28

[3]
Biodegradable Polymer Membranes Applied in Guided Bone/Tissue Regeneration: A Review.

Polymers (Basel). 2016-3-29

[4]
Biomedical Applications of Biodegradable Polyesters.

Polymers (Basel). 2016-1-16

[5]
Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes.

Sci Technol Adv Mater. 2011-1-12

[6]
Graphene: A Versatile Carbon-Based Material for Bone Tissue Engineering.

Stem Cells Int. 2015

[7]
Myoblast differentiation of human mesenchymal stem cells on graphene oxide and electrospun graphene oxide-polymer composite fibrous meshes: importance of graphene oxide conductivity and dielectric constant on their biocompatibility.

Biofabrication. 2015-2-18

[8]
Synergistic acceleration in the osteogenesis of human mesenchymal stem cells by graphene oxide-calcium phosphate nanocomposites.

Chem Commun (Camb). 2014-8-11

[9]
The development, fabrication, and material characterization of polypropylene composites reinforced with carbon nanofiber and hydroxyapatite nanorod hybrid fillers.

Int J Nanomedicine. 2014-3-11

[10]
A review of protein adsorption on bioceramics.

Interface Focus. 2012-3-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索