Liu Chen, Wong Hoi Man, Yeung Kelvin Wai Kwok, Tjong Sie Chin
Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
Department of Orthopedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
Polymers (Basel). 2016 Aug 8;8(8):287. doi: 10.3390/polym8080287.
Graphene oxide (GO) and a nanohydroxyapatite rod (nHA) of good biocompatibility were incorporated into polylactic acid (PLA) through electrospinning to form nanocomposite fiber scaffolds for bone tissue engineering applications. The preparation, morphological, mechanical and thermal properties, as well as biocompatibility of electrospun PLA scaffolds reinforced with GO and/or nHA were investigated. Electron microscopic examination and image analysis showed that GO and nHA nanofillers refine the diameter of electrospun PLA fibers. Differential scanning calorimetric tests showed that nHA facilitates the crystallization process of PLA, thereby acting as a nucleating site for the PLA molecules. Tensile test results indicated that the tensile strength and elastic modulus of the electrospun PLA mat can be increased by adding 15 wt % nHA. The hybrid nanocomposite scaffold with 15 wt % nHA and 1 wt % GO fillers exhibited higher tensile strength amongst the specimens investigated. Furthermore, nHA and GO nanofillers enhanced the water uptake of PLA. Cell cultivation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase tests demonstrated that all of the nanocomposite scaffolds exhibit higher biocompatibility than the pure PLA mat, particularly for the scaffold with 15 wt % nHA and 1 wt % GO. Therefore, the novel electrospun PLA nanocomposite scaffold with 15 wt % nHA and 1 wt % GO possessing a high tensile strength and modulus, as well as excellent cell proliferation is a potential biomaterial for bone tissue engineering applications.
通过静电纺丝将具有良好生物相容性的氧化石墨烯(GO)和纳米羟基磷灰石棒(nHA)掺入聚乳酸(PLA)中,以形成用于骨组织工程应用的纳米复合纤维支架。研究了用GO和/或nHA增强的静电纺PLA支架的制备、形态、力学和热性能以及生物相容性。电子显微镜检查和图像分析表明,GO和nHA纳米填料细化了静电纺PLA纤维的直径。差示扫描量热测试表明,nHA促进了PLA的结晶过程,从而作为PLA分子的成核位点。拉伸试验结果表明,添加15 wt%的nHA可提高静电纺PLA垫的拉伸强度和弹性模量。在研究的样品中,含有15 wt% nHA和1 wt% GO填料的混合纳米复合支架表现出更高的拉伸强度。此外,nHA和GO纳米填料提高了PLA的吸水率。细胞培养、3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑溴盐(MTT)和碱性磷酸酶测试表明,所有纳米复合支架均比纯PLA垫表现出更高的生物相容性,特别是对于含有15 wt% nHA和1 wt% GO的支架。因此,具有15 wt% nHA和1 wt% GO的新型静电纺PLA纳米复合支架具有高拉伸强度和模量以及优异的细胞增殖能力,是骨组织工程应用的潜在生物材料。
Colloids Surf B Biointerfaces. 2012-9-18
Colloids Surf B Biointerfaces. 2018-9-5
Mater Sci Eng C Mater Biol Appl. 2019-12-24
J Mech Behav Biomed Mater. 2023-6
Biomimetics (Basel). 2025-2-1
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2025-1-15
Materials (Basel). 2024-12-17
Biology (Basel). 2024-4-2
Int J Mol Sci. 2023-9-29
Compr Rev Food Sci Food Saf. 2010-9
Polymers (Basel). 2016-3-29
Polymers (Basel). 2016-1-16
Sci Technol Adv Mater. 2011-1-12
Stem Cells Int. 2015
Interface Focus. 2012-3-22