Department of Computer Science, NTNU-Norwegian University of Science and Technology, 2815 Gjøvik, Norway.
Sensors (Basel). 2021 Mar 17;21(6):2091. doi: 10.3390/s21062091.
The virtual inpainting of artworks provides a nondestructive mode of hypothesis visualization, and it is especially attractive when physical restoration raises too many methodological and ethical concerns. At the same time, in Cultural Heritage applications, the level of details in virtual reconstruction and their accuracy are crucial. We propose an inpainting algorithm that is based on generative adversarial network, with two generators: one for edges and another one for colors. The color generator rebalances chromatically the result by enforcing a loss in the discretized gamut space of the dataset. This way, our method follows the modus operandi of an artist: edges first, then color palette, and, at last, color tones. Moreover, we simulate the stochasticity of the lacunae in artworks with morphological variations of a random walk mask that recreate various degradations, including craquelure. We showcase the performance of our model on a dataset of digital images of wall paintings from the Dunhuang UNESCO heritage site. Our proposals of restored images are visually satisfactory and they are quantitatively comparable to state-of-the-art approaches.
艺术品的虚拟修复为假设可视化提供了一种非破坏性的模式,当物理修复引起太多方法和伦理问题时,它尤其具有吸引力。同时,在文化遗产应用中,虚拟重建的细节水平及其准确性至关重要。我们提出了一种基于生成对抗网络的修复算法,该算法有两个生成器:一个用于边缘,另一个用于颜色。颜色生成器通过在数据集的离散色域空间中施加损失来重新平衡颜色的色度,从而使我们的方法遵循艺术家的操作模式:先边缘,然后是调色板,最后是色调。此外,我们使用随机游走掩模的形态变化来模拟艺术品中裂隙的随机性,该掩模可以再现各种退化,包括龟裂。我们在敦煌 UNESCO 遗产地的壁画数字图像数据集上展示了我们模型的性能。我们提出的修复图像在视觉上令人满意,并且在数量上可以与最先进的方法相媲美。