Suppr超能文献

评估多传感器技术捕捉地形复杂性的能力。

Evaluating the Ability of Multi-Sensor Techniques to Capture Topographic Complexity.

机构信息

Department of Geography, Planning, and Environment, East Carolina University, Greenville, NC 27858, USA.

College of Engineering and Technology, East Carolina University, Greenville, NC 27858, USA.

出版信息

Sensors (Basel). 2021 Mar 17;21(6):2105. doi: 10.3390/s21062105.

Abstract

This study provides an evaluation of multiple sensors by examining their precision and ability to capture topographic complexity. Five different small unmanned aerial systems (sUAS) were evaluated, each with a different camera, Global Navigation Satellite System (GNSS), and Inertial Measurement Unit (IMU). A lidar was also used on the largest sUAS and as a mobile scanning system. The quality of each of the seven platforms were compared to actual surface measurements gathered with real-time kinematic (RTK)-GNSS and terrestrial laser scanning. Rigorous field and photogrammetric assessment workflows were designed around a combination of structure-from-motion to align images, Monte Carlo simulations to calculate spatially variable error, object-based image analysis to create objects, and MC32-PM algorithm to calculate vertical differences between two dense point clouds. The precision of the sensors ranged 0.115 m (minimum of 0.11 m for MaRS with Sony A7iii camera and maximum of 0.225 m for Mavic2 Pro). In a heterogenous test location with varying slope and high terrain roughness, only three of the seven mobile platforms performed well (MaRS, Inspire 2, and Phantom 4 Pro). All mobile sensors performed better for the homogenous test location, but the sUAS lidar and mobile lidar contained the most noise. The findings presented herein provide insights into cost-benefit of purchasing various sUAS and sensors and their ability to capture high-definition topography.

摘要

本研究通过考察传感器的精度和捕捉地形复杂性的能力,对多个传感器进行了评估。评估了 5 种不同的小型无人机系统 (sUAS),每种系统都配备了不同的相机、全球导航卫星系统 (GNSS) 和惯性测量单元 (IMU)。最大的 sUAS 还配备了激光雷达,并作为移动扫描系统使用。将这 7 个平台中的每一个与使用实时动态 (RTK)-GNSS 和地面激光扫描采集的实际表面测量结果进行了比较。围绕着基于运动的结构对齐图像、蒙特卡罗模拟计算空间变化误差、基于对象的图像分析创建对象以及 MC32-PM 算法计算两个密集点云之间的垂直差异等综合技术,设计了严格的现场和摄影测量评估工作流程。传感器的精度范围为 0.115 米(最小精度为 MaRS 搭配索尼 A7iii 相机的 0.11 米,最大精度为 Mavic2 Pro 的 0.225 米)。在具有不同坡度和高地形粗糙度的异质测试地点,只有 7 个移动平台中的 3 个性能良好(MaRS、Inspire 2 和 Phantom 4 Pro)。所有移动传感器在同质测试地点的性能都更好,但 sUAS 激光雷达和移动激光雷达包含的噪声最多。本文的研究结果为购买各种 sUAS 和传感器的成本效益及其捕获高清地形的能力提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b276/8002534/e49d92f3134e/sensors-21-02105-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验