Suppr超能文献

医疗保健中的数据挖掘:应用战略情报技术描绘 25 年的研究发展。

Data Mining in Healthcare: Applying Strategic Intelligence Techniques to Depict 25 Years of Research Development.

机构信息

Graduate Program of Industrial Systems and Processes, University of Santa Cruz do Sul, Santa Cruz do Sul 96816-501, Brazil.

Department of Industrial Engineering, Federal University of Rio Grande do Sul, Porto Alegre 90035-190, Brazil.

出版信息

Int J Environ Res Public Health. 2021 Mar 17;18(6):3099. doi: 10.3390/ijerph18063099.

Abstract

In order to identify the strategic topics and the thematic evolution structure of data mining applied to healthcare, in this paper, a bibliometric performance and network analysis (BPNA) was conducted. For this purpose, 6138 articles were sourced from the Web of Science covering the period from 1995 to July 2020 and the SciMAT software was used. Our results present a strategic diagram composed of 19 themes, of which the 8 motor themes ('NEURAL-NETWORKS', 'CANCER', 'ELETRONIC-HEALTH-RECORDS', 'DIABETES-MELLITUS', 'ALZHEIMER'S-DISEASE', 'BREAST-CANCER', 'DEPRESSION', and 'RANDOM-FOREST') are depicted in a thematic network. An in-depth analysis was carried out in order to find hidden patterns and to provide a general perspective of the field. The thematic network structure is arranged thusly that its subjects are organized into two different areas, (i) practices and techniques related to data mining in healthcare, and (ii) health concepts and disease supported by data mining, embodying, respectively, the hotspots related to the data mining and medical scopes, hence demonstrating the field's evolution over time. Such results make it possible to form the basis for future research and facilitate decision-making by researchers and practitioners, institutions, and governments interested in data mining in healthcare.

摘要

为了确定数据挖掘在医疗保健中的战略主题和主题演变结构,本文采用文献计量绩效和网络分析(BPNA)进行研究。为此,从 1995 年至 2020 年 7 月,从 Web of Science 中获取了 6138 篇文章,并使用了 SciMAT 软件。我们的研究结果呈现了一个由 19 个主题组成的战略图,其中 8 个核心主题(“神经网络”、“癌症”、“电子健康记录”、“糖尿病”、“阿尔茨海默病”、“乳腺癌”、“抑郁症”和“随机森林”)在一个主题网络中进行了描绘。为了发现隐藏的模式并提供该领域的总体视角,我们进行了深入分析。主题网络结构的安排是将其主题组织成两个不同的领域:(i)医疗保健中与数据挖掘相关的实践和技术;(ii)数据挖掘支持的健康概念和疾病,分别体现了与数据挖掘和医学范围相关的热点,从而展示了该领域随时间的演变。这些结果为未来的研究提供了基础,并为对医疗保健数据挖掘感兴趣的研究人员和从业者、机构和政府提供了决策支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a22/8002654/e37640f20975/ijerph-18-03099-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验