Borrego-González Sara, Dalby Matthew J, Díaz-Cuenca Aránzazu
Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, C/Américo Vespucio 49, Isla de la Cartuja, 41092 Seville, Spain.
Center for Cell Engineering, Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK.
Biomimetics (Basel). 2021 Mar 18;6(1):20. doi: 10.3390/biomimetics6010020.
Design of bioinspired materials that mimic the extracellular matrix (ECM) at the nanoscale is a challenge in tissue engineering. While nanofibrillar gelatin materials mimic chemical composition and nano-architecture of natural ECM collagen components, it lacks the characteristic D-staggered array (D-periodicity) of 67 nm, which is an important cue in terms of cell recognition and adhesion properties. In this study, a nanofibrous gelatin matrix with improved biomimicry is achieved using a formulation including a minimal content of D-periodic self-assembled atelocollagen. We suggest a processing route approach consisting of the thermally induced phase separation of the gelatin based biopolymeric mixture precursor followed by chemical-free material cross-linking. The matrix nanostructure is characterized using field emission gun scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), wide angle X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The cell culture assays indicate that incorporation of 2.6 wt.% content of D-periodic atelocollagen to the gelatin material, produces a significant increase of MC3T3-E1 mouse preosteoblast cells attachment and human mesenchymal stem cells (hMSCs) proliferation, in comparison with related bare gelatin matrices. The presented results demonstrate the achievement of an efficient route to produce a cost-effective, compositionally defined and low immunogenic "collagen-like" instructive biomaterial, based on gelatin.
在纳米尺度上设计模仿细胞外基质(ECM)的仿生材料是组织工程领域的一项挑战。虽然纳米纤维状明胶材料模仿了天然ECM胶原蛋白成分的化学组成和纳米结构,但它缺乏67纳米的特征性D-交错阵列(D-周期性),而这在细胞识别和黏附特性方面是一个重要线索。在本研究中,通过使用一种包含最低含量的D-周期性自组装I型胶原蛋白的配方,实现了具有更好仿生性能的纳米纤维状明胶基质。我们提出了一种加工路线方法,包括基于明胶的生物聚合物混合物前体的热诱导相分离,随后进行无化学物质的材料交联。使用场发射枪扫描电子显微镜(FEG-SEM)、透射电子显微镜(TEM)、广角X射线衍射(XRD)和傅里叶变换红外光谱(FT-IR)对基质纳米结构进行表征。细胞培养试验表明,与相关的裸明胶基质相比,向明胶材料中掺入2.6 wt.%含量的D-周期性I型胶原蛋白,可显著增加MC3T3-E1小鼠前成骨细胞的附着以及人间充质干细胞(hMSCs)的增殖。所呈现的结果表明,基于明胶开发出了一种高效的方法来生产具有成本效益、成分明确且低免疫原性的“类胶原蛋白”指导性生物材料。