Suppr超能文献

基于扫描电子显微镜图像的增强微观分辨率神经网络。

Neural Network for Enhancing Microscopic Resolution Based on Images from Scanning Electron Microscope.

机构信息

Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.

出版信息

Sensors (Basel). 2021 Mar 18;21(6):2139. doi: 10.3390/s21062139.

Abstract

In this paper, an artificial neural network is applied for enhancing the resolution of images from an optical microscope based on a network trained with the images acquired from a scanning electron microscope. The resolution of microscopic images is important in various fields, especially for microfluidics because the measurements, such as the dimension of channels and cells, largely rely on visual information. The proposed method is experimentally validated with microfluidic structure. The images of structural edges from the optical microscope are blurred due to optical effects while the images from the scanning electron microscope are sharp and clear. Intensity profiles perpendicular to the edges and the corresponding edge positions determined by the scanning electron microscope images are plugged in a neural network as the input features and the output target, respectively. According to the results, the blurry edges of the microstructure in optical images can be successfully enhanced. The average error between the predicted channel position and ground truth is around 328 nanometers. The effects of the feature length are discussed. The proposed method is expected to significantly contribute to microfluidic applications, such as on-chip cell evaluation.

摘要

本文应用人工神经网络来提高基于通过扫描电子显微镜获取的图像训练的网络的光学显微镜图像的分辨率。微观图像的分辨率在各个领域都很重要,特别是对于微流控技术,因为诸如通道和细胞的尺寸等测量很大程度上依赖于视觉信息。该方法通过微流控结构进行了实验验证。由于光学效应,光学显微镜的结构边缘的图像变得模糊,而扫描电子显微镜的图像则清晰锐利。与边缘垂直的强度分布和由扫描电子显微镜图像确定的相应边缘位置被作为输入特征和输出目标分别插入神经网络中。结果表明,可以成功地增强光学图像中微结构的模糊边缘。预测的通道位置与实际位置之间的平均误差约为 328 纳米。讨论了特征长度的影响。该方法有望为微流控应用做出重大贡献,例如芯片上的细胞评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验