Suppr超能文献

基于传感器的人机活动识别的时空深度学习。

Sensor-Based Human Activity Recognition with Spatio-Temporal Deep Learning.

机构信息

Department of Computer Science, College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia.

Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia.

出版信息

Sensors (Basel). 2021 Mar 18;21(6):2141. doi: 10.3390/s21062141.

Abstract

Human activity recognition (HAR) remains a challenging yet crucial problem to address in computer vision. HAR is primarily intended to be used with other technologies, such as the Internet of Things, to assist in healthcare and eldercare. With the development of deep learning, automatic high-level feature extraction has become a possibility and has been used to optimize HAR performance. Furthermore, deep-learning techniques have been applied in various fields for sensor-based HAR. This study introduces a new methodology using convolution neural networks (CNN) with varying kernel dimensions along with bi-directional long short-term memory (BiLSTM) to capture features at various resolutions. The novelty of this research lies in the effective selection of the optimal video representation and in the effective extraction of spatial and temporal features from sensor data using traditional CNN and BiLSTM. Wireless sensor data mining (WISDM) and UCI datasets are used for this proposed methodology in which data are collected through diverse methods, including accelerometers, sensors, and gyroscopes. The results indicate that the proposed scheme is efficient in improving HAR. It was thus found that unlike other available methods, the proposed method improved accuracy, attaining a higher score in the WISDM dataset compared to the UCI dataset (98.53% vs. 97.05%).

摘要

人体活动识别 (HAR) 仍然是计算机视觉中一个具有挑战性但至关重要的问题。HAR 主要用于与物联网等其他技术结合,以帮助医疗保健和老年人护理。随着深度学习的发展,自动高级特征提取成为可能,并已用于优化 HAR 性能。此外,深度学习技术已在各种领域中应用于基于传感器的 HAR。本研究提出了一种新的方法,使用具有不同核尺寸的卷积神经网络 (CNN) 以及双向长短期记忆 (BiLSTM) 来以各种分辨率捕获特征。本研究的新颖之处在于有效选择最佳视频表示,以及有效提取传感器数据的空间和时间特征,使用传统的 CNN 和 BiLSTM。该方法使用 WISDM 和 UCI 数据集,其中数据通过包括加速度计、传感器和陀螺仪在内的各种方法收集。结果表明,所提出的方案在提高 HAR 方面非常有效。与其他可用方法不同,与 UCI 数据集相比,该方法在 WISDM 数据集上提高了准确性,达到了更高的分数(98.53% 对 97.05%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226c/8003187/010090b20ec6/sensors-21-02141-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验