Suppr超能文献

在适应性实验室进化的指导下用于β-丙氨酸生产的新型模式工程。

Novel Mode Engineering for β-Alanine Production in with the Guide of Adaptive Laboratory Evolution.

作者信息

Xu Jian, Zhou Li, Yin Meng, Zhou Zhemin

机构信息

The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.

Food Biotechnology Research Institute, Jiangnan University (Rugao), Rugao 226500, China.

出版信息

Microorganisms. 2021 Mar 15;9(3):600. doi: 10.3390/microorganisms9030600.

Abstract

The strategy of anaerobic biosynthesis of β-alanine by () has been reported. However, the low energy production under anaerobic condition limited cell growth and then affected the production efficiency of β-alanine. Here, the adaptive laboratory evolution was carried out to improve energy production of lacking phosphoenolpyruvate carboxylase under anaerobic condition. Five mutants were isolated and analyzed. Sequence analysis showed that most of the consistent genetic mutations among the mutants were related with pyruvate accumulation, indicating that pyruvate accumulation enabled the growth of the lethal parent. It is possible that the accumulated pyruvate provides sufficient precursors for energy generation and CO fixing reaction catalyzed by phosphoenolpyruvate carboxykinase. B0016-100BB (B0016-090BB, ::FRT, ::FRT, ::FRT, :: *, :: *, :: *) was engineered based on the analysis of the genetic mutations among the mutants for the biosynthesis of β-alanine. Along with the recruitment of glycerol as the sole carbon source, 1.07 g/L β-alanine was generated by B0016-200BB (B0016-100BB, ::FRT) harboring pET24a--, which was used for overexpression of two key enzymes in β-alanine fermentation process. Compared with the starting strain, which can hardly generate β-alanine under anaerobic condition, the production efficiency of β-alanine of the engineered cell factory was significantly improved.

摘要

已有报道(某菌)通过厌氧生物合成β-丙氨酸的策略。然而,厌氧条件下能量产生较低限制了细胞生长,进而影响了β-丙氨酸的生产效率。在此,进行了适应性实验室进化以提高在厌氧条件下缺乏磷酸烯醇丙酮酸羧化酶的某菌的能量产生。分离并分析了五个突变体。序列分析表明,这些突变体中大多数一致的基因突变与丙酮酸积累有关,这表明丙酮酸积累使致死亲本得以生长。积累的丙酮酸有可能为磷酸烯醇丙酮酸羧激酶催化的能量生成和二氧化碳固定反应提供足够的前体。基于对突变体间基因突变的分析,构建了用于β-丙氨酸生物合成的B0016-100BB(B0016-090BB,::FRT,::FRT,::FRT,:: *,:: *,:: *)。随着甘油作为唯一碳源的引入,携带用于在β-丙氨酸发酵过程中过表达两种关键酶的pET24a--的B0016-200BB(B0016-100BB,::FRT)产生了1.07 g/L的β-丙氨酸。与在厌氧条件下几乎不产生β-丙氨酸的起始菌株相比,工程化细胞工厂的β-丙氨酸生产效率显著提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96a4/8000549/2c891927b5ab/microorganisms-09-00600-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验