Suppr超能文献

大肠杆菌的代谢工程生产 L-天冬氨酸及其衍生物β-丙氨酸的高化学计量产率。

Metabolic engineering of Escherichia coli for production of L-aspartate and its derivative β-alanine with high stoichiometric yield.

机构信息

CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.

CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

出版信息

Metab Eng. 2019 Jul;54:244-254. doi: 10.1016/j.ymben.2019.04.012. Epub 2019 May 4.

Abstract

L-aspartate is an important 4-carbon platform compound that can be used as the precursor of numerous chemical products. The bioproduction of L-aspartate directly from biomass resources is expected to provide a more cost-competitive technique route. Yet little metabolic engineering work on this matter has been carried out. In this study, we designed a shortcut pathway of L-aspartate biosynthesis in Escherichia coli, with a maximized stoichiometric yield of 2 mol/mol glucose. L-aspartate aminotransferase (AspC) was overexpressed for producing L-aspartate and coexpressed with L-aspartate-a-decarboxylase (PanD) for producing L-aspartate's derivative β-alanine. L-aspartate could only be detected after directing carbon flux towards oxaloacetate and blocking the "futile cycle" with TCA cycle. A cofactor self-sufficient system successfully improved the efficiency of AspC-catalyzing L-aspartate biosynthesis reaction, and the glucose uptake remolding capably decreased byproducts from pyruvate. More targets were modified for relieving the bottleneck during fed-batch bioconversion. As a result, 1.01 mol L-aspartate/mol glucose and 1.52 mol β-alanine/mol glucose were produced in corresponding strains respectively. Fed-batch bioconversion allowed 249 mM (33.1 g/L) L-aspartate or 424 mM (37.7 g/L) β-alanine production, respectively. The study provides a novel promising metabolic engineering route for the production of L-aspartate and its derivate chemicals using biomass resources. These results also represent the first report of the efficient bioproduction of L-aspartate directly from glucose in E. coli and the highest yield of β-alanine reported so far.

摘要

L-天冬氨酸是一种重要的 4 碳平台化合物,可作为许多化学产品的前体。直接从生物质资源生产 L-天冬氨酸有望提供更具成本竞争力的技术途径。然而,在这方面几乎没有进行代谢工程方面的工作。在本研究中,我们在大肠杆菌中设计了 L-天冬氨酸生物合成的捷径途径,最大理论产率为 2mol/mol 葡萄糖。过量表达天冬氨酸转氨酶 (AspC) 以生产 L-天冬氨酸,并与 L-天冬氨酸-α-脱羧酶 (PanD) 共表达以生产 L-天冬氨酸的衍生物β-丙氨酸。只有在引导碳通量流向草酰乙酸并通过 TCA 循环阻断“无效循环”后,才能检测到 L-天冬氨酸。辅酶自给自足系统成功提高了 AspC 催化 L-天冬氨酸生物合成反应的效率,并且葡萄糖摄取重塑能够有效地减少丙酮酸的副产物。为缓解分批补料生物转化过程中的瓶颈,对更多目标进行了修饰。结果,相应菌株分别产生了 1.01mol L-天冬氨酸/mol 葡萄糖和 1.52mol β-丙氨酸/mol 葡萄糖。分批补料生物转化分别允许生产 249mM(33.1g/L)L-天冬氨酸或 424mM(37.7g/L)β-丙氨酸。该研究为利用生物质资源生产 L-天冬氨酸及其衍生化学品提供了一种有前途的新代谢工程途径。这些结果还代表了大肠杆菌中首次直接从葡萄糖高效生物生产 L-天冬氨酸和迄今为止报道的最高β-丙氨酸产量的报告。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验