Nesci Salvatore, Trombetti Fabiana, Pagliarani Alessandra, Ventrella Vittoria, Algieri Cristina, Tioli Gaia, Lenaz Giorgio
Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy.
Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy.
Life (Basel). 2021 Mar 15;11(3):242. doi: 10.3390/life11030242.
Under aerobic conditions, mitochondrial oxidative phosphorylation (OXPHOS) converts the energy released by nutrient oxidation into ATP, the currency of living organisms. The whole biochemical machinery is hosted by the inner mitochondrial membrane (mtIM) where the protonmotive force built by respiratory complexes, dynamically assembled as super-complexes, allows the FF-ATP synthase to make ATP from ADP + Pi. Recently mitochondria emerged not only as cell powerhouses, but also as signaling hubs by way of reactive oxygen species (ROS) production. However, when ROS removal systems and/or OXPHOS constituents are defective, the physiological ROS generation can cause ROS imbalance and oxidative stress, which in turn damages cell components. Moreover, the morphology of mitochondria rules cell fate and the formation of the mitochondrial permeability transition pore in the mtIM, which, most likely with the FF-ATP synthase contribution, permeabilizes mitochondria and leads to cell death. As the multiple mitochondrial functions are mutually interconnected, changes in protein composition by mutations or in supercomplex assembly and/or in membrane structures often generate a dysfunctional cascade and lead to life-incompatible diseases or severe syndromes. The known structural/functional changes in mitochondrial proteins and structures, which impact mitochondrial bioenergetics because of an impaired or defective energy transduction system, here reviewed, constitute the main biochemical damage in a variety of genetic and age-related diseases.
在有氧条件下,线粒体氧化磷酸化(OXPHOS)将营养物质氧化释放的能量转化为三磷酸腺苷(ATP),即生物体的能量货币。整个生化机制由线粒体内膜(mtIM)承载,呼吸复合体动态组装形成超复合体,在此过程中建立的质子动力势使F₀F₁-ATP合酶能够利用二磷酸腺苷(ADP)和无机磷酸(Pi)合成ATP。最近,线粒体不仅被视为细胞的能量工厂,还通过活性氧(ROS)的产生成为信号枢纽。然而,当ROS清除系统和/或OXPHOS成分存在缺陷时,生理性ROS生成会导致ROS失衡和氧化应激,进而损害细胞成分。此外,线粒体的形态决定细胞命运,线粒体内膜上的线粒体通透性转换孔的形成,很可能在F₀F₁-ATP合酶的作用下,使线粒体通透性增加并导致细胞死亡。由于线粒体的多种功能相互关联,突变导致的蛋白质组成变化、超复合体组装变化和/或膜结构变化常常引发功能失调级联反应,导致与生命不相容的疾病或严重综合征。本文综述了线粒体蛋白质和结构中已知的结构/功能变化,这些变化因能量转导系统受损或有缺陷而影响线粒体生物能量学,构成了多种遗传和年龄相关疾病中的主要生化损伤。