Suppr超能文献

协作式基于地形的水下定位的通信规划。

Communication Planning for Cooperative Terrain-Based Underwater Localization.

机构信息

Collaborative Robotics and Intelligent Systems Institute, Oregon State University, Corvallis, OR 97331, USA.

出版信息

Sensors (Basel). 2021 Mar 1;21(5):1675. doi: 10.3390/s21051675.

Abstract

This paper presents a decentralized communication planning algorithm for cooperative terrain-based navigation (dec-TBN) with autonomous underwater vehicles. The proposed algorithm uses forward simulation to approximate the value of communicating at each time step. The simulations are used to build a directed acyclic graph that can be searched to provide a minimum cost communication schedule. Simulations and field trials are used to validate the algorithm. The simulations use a real-world bathymetry map from Lake Nighthorse, CO, and a sensor model derived from an Ocean Server Iver2 vehicle. The simulation results show that the algorithm finds a communication schedule that reduces communication bandwidth by 86% and improves robot localization by up to 27% compared to non-cooperative terrain-based navigation. Field trials were conducted in Foster Reservoir, OR, using two Riptide Autonomous Solutions micro-unmanned underwater vehicles. The vehicles collected GPS, altimeter, acoustic communications, and dead reckoning data while following paths on the surface of the reservoir. The data were used to evaluate the planning algorithm. In three of four missions, the planning algorithm improved dec-TBN localization while reducing acoustic communication bandwidth by 56%. In the fourth mission, dec-TBN performed better when using full communications bandwidth, but the communication policy for that mission maintained 86% of the localization accuracy while using 9% of the communications. These results indicate that the presented communication planning algorithm can maintain or improve dec-TBN accuracy while reducing the number of communications used for localization.

摘要

本文提出了一种用于自主水下机器人协同地形导航(dec-TBN)的分散式通信规划算法。该算法使用前向仿真来近似每个时间步长的通信值。仿真用于构建一个有向无环图,可以对其进行搜索以提供最低成本的通信计划。通过仿真和现场试验对算法进行了验证。仿真使用了来自科罗拉多州奈霍斯湖的真实海底地形地图和源自 Ocean Server Iver2 车辆的传感器模型。仿真结果表明,与非协作地形导航相比,该算法找到了一种通信计划,可将通信带宽降低 86%,并将机器人定位提高高达 27%。现场试验在俄勒冈州福斯特水库进行,使用了两艘 Riptide Autonomous Solutions 微型自主水下机器人。这些车辆在水库表面行驶时,收集了 GPS、高度计、声通信和推算导航数据。这些数据用于评估规划算法。在四次任务中的三次中,规划算法提高了 dec-TBN 的定位精度,同时将声通信带宽降低了 56%。在第四次任务中,当使用全通信带宽时,dec-TBN 的性能更好,但该任务的通信策略在使用 9%的通信带宽的情况下保持了 86%的定位精度。这些结果表明,所提出的通信规划算法可以在减少用于定位的通信数量的同时保持或提高 dec-TBN 的精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/166f/7957779/c60bc1726ed2/sensors-21-01675-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验