Suppr超能文献

深度学习模型在近红外光透照图像中龋病检测的可推广性

Generalizability of Deep Learning Models for Caries Detection in Near-Infrared Light Transillumination Images.

作者信息

Holtkamp Agnes, Elhennawy Karim, Cejudo Grano de Oro José E, Krois Joachim, Paris Sebastian, Schwendicke Falk

机构信息

Department of Oral Diagnostics, Digital Health and Health Services Research, Charité-Universitätsmedizin Berlin, 14197 Berlin, Germany.

Department of Operative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, 14197 Berlin, Germany.

出版信息

J Clin Med. 2021 Mar 1;10(5):961. doi: 10.3390/jcm10050961.

Abstract

OBJECTIVES

The present study aimed to train deep convolutional neural networks (CNNs) to detect caries lesions on Near-Infrared Light Transillumination (NILT) imagery obtained either in vitro or in vivo and to assess the models' generalizability.

METHODS

In vitro, 226 extracted posterior permanent human teeth were mounted in a diagnostic model in a dummy head. Then, NILT images were generated (DIAGNOcam, KaVo, Biberach), and images were segmented tooth-wise. In vivo, 1319 teeth from 56 patients were obtained and segmented similarly. Proximal caries lesions were annotated pixel-wise by three experienced dentists, reviewed by a fourth dentist, and then transformed into binary labels. We trained ResNet classification models on both in vivo and in vitro datasets and used 10-fold cross-validation for estimating the performance and generalizability of the models. We used GradCAM to increase explainability.

RESULTS

The tooth-level prevalence of caries lesions was 41% in vitro and 49% in vivo, respectively. Models trained and tested on in vivo data performed significantly better (mean ± SD accuracy: 0.78 ± 0.04) than those trained and tested on in vitro data (accuracy: 0.64 ± 0.15; < 0.05). When tested in vitro, the models trained in vivo showed significantly lower accuracy (0.70 ± 0.01; < 0.01). Similarly, when tested in vivo, models trained in vitro showed significantly lower accuracy (0.61 ± 0.04; < 0.05). In both cases, this was due to decreases in sensitivity (by -27% for models trained in vivo and -10% for models trained in vitro).

CONCLUSIONS

Using in vitro setups for generating NILT imagery and training CNNs comes with low accuracy and generalizability.

CLINICAL SIGNIFICANCE

Studies employing in vitro imagery for developing deep learning models should be critically appraised for their generalizability. Applicable deep learning models for assessing NILT imagery should be trained on in vivo data.

摘要

目的

本研究旨在训练深度卷积神经网络(CNN),以检测在体外或体内获得的近红外光透照(NILT)图像上的龋损,并评估模型的通用性。

方法

在体外,将226颗拔除的人类后恒牙安装在模拟头的诊断模型中。然后,生成NILT图像(DIAGNOcam,卡瓦,比伯拉赫),并按牙齿进行图像分割。在体内,从56名患者中获取1319颗牙齿并进行类似的分割。由三名经验丰富的牙医逐像素标注邻面龋损,由第四名牙医进行审核,然后转换为二元标签。我们在体内和体外数据集上训练ResNet分类模型,并使用10折交叉验证来估计模型的性能和通用性。我们使用GradCAM来提高可解释性。

结果

龋损的牙齿水平患病率在体外为41%,在体内为49%。在体内数据上训练和测试的模型表现明显优于在体外数据上训练和测试的模型(平均±标准差准确率:0.78±0.04)(准确率:0.64±0.15;<0.05)。在体外测试时,在体内训练的模型准确率显著较低(0.70±0.01;<0.01)。同样,在体内测试时,在体外训练的模型准确率显著较低(0.61±0.04;<0.05)。在这两种情况下,这都是由于敏感性降低(在体内训练的模型降低了27%,在体外训练的模型降低了10%)。

结论

使用体外设置生成NILT图像并训练CNN的准确性和通用性较低。

临床意义

对于采用体外图像开发深度学习模型的研究,应严格评估其通用性。适用于评估NILT图像的深度学习模型应在体内数据上进行训练。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f94e/7957685/7bce82db460e/jcm-10-00961-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验