Valencia-Duque Andrés F, Cárdenas-Peña David A, Álvarez-Meza Andrés M, Orozco-Gutiérrez Álvaro A, Quintero-Riaza Héctor F
Automatics Research Group, Engineering Faculty, Universidad Tecnológica de Pereira, Pereira PC 660001, Colombia.
Signal processing and Recognition Group, Universidad Nacional de Colombia sede Manizales, Manizales PC 170004, Colombia.
Sensors (Basel). 2021 Mar 20;21(6):2186. doi: 10.3390/s21062186.
Pressure is one of the essential variables to give information about engine condition and monitoring. Direct recording of this signal is complex and invasive, while angular velocity can be measured. Nonetheless, the challenge is to predict the cylinder pressure using the shaft kinematics accurately. In this paper, a time-delay neural network (TDNN), interpreted as a finite pulse response (FIR) filter, is proposed to estimate the in-cylinder pressure of a single-cylinder internal combustion engine (ICE) from fluctuations in shaft angular velocity. The experiments are conducted over data obtained from an ICE operating in 12 different states by changing the angular velocity and load. The TDNN's delay is adjusted to get the highest possible correlation-based score. Our methodology can predict pressure with an R2 >0.9, avoiding complicated pre-processing steps.
压力是提供有关发动机状态和监测信息的基本变量之一。直接记录该信号既复杂又具有侵入性,而角速度是可以测量的。尽管如此,挑战在于利用轴的运动学精确预测气缸压力。本文提出了一种被解释为有限脉冲响应(FIR)滤波器的时延神经网络(TDNN),用于根据轴角速度的波动来估计单缸内燃机(ICE)的缸内压力。实验是基于通过改变角速度和负载,从处于12种不同状态运行的内燃机获取的数据进行的。调整TDNN的延迟以获得基于相关性的最高分数。我们的方法可以在R2>0.9的情况下预测压力,避免了复杂的预处理步骤。