Department of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Korea.
Sensors (Basel). 2021 Mar 24;21(7):2265. doi: 10.3390/s21072265.
An around view monitoring (AVM) system acquires the front, rear, left, and right-side information of a vehicle using four cameras and transforms the four images into one image coordinate system to monitor around the vehicle with one image. Conventional AVM calibration utilizes the maximum likelihood estimation (MLE) to determine the parameters that can transform the captured four images into one AVM image. The MLE requires reference data of the image coordinate system and the world coordinate system to estimate these parameters. In conventional AVM calibration, many aligned calibration boards are placed around the vehicle and are measured to extract the reference sample data. However, accurately placing and measuring the calibration boards around a vehicle is an exhaustive procedure. To remediate this problem, we propose a novel AVM calibration method that requires only four randomly placed calibration boards by estimating the location of each calibration board. First, we define the AVM errors and determine the parameters that minimize the error in estimating the location. We then evaluate the accuracy of the proposed method through experiments using a real-sized vehicle and an electric vehicle for children to show that the proposed method can generate an AVM image similar to the conventional AVM calibration method regardless of a vehicle's size.
全景监测(AVM)系统使用四个摄像头获取车辆的前、后、左、右侧信息,并将四个图像转换到一个图像坐标系中,以便用一个图像监测车辆周围情况。传统的 AVM 校准利用最大似然估计(MLE)来确定可以将捕获的四个图像转换为一个 AVM 图像的参数。MLE 需要图像坐标系和世界坐标系的参考数据来估计这些参数。在传统的 AVM 校准中,需要在车辆周围放置许多对齐的校准板,并进行测量以提取参考样本数据。然而,准确地在车辆周围放置和测量校准板是一个繁琐的过程。为了解决这个问题,我们提出了一种新的 AVM 校准方法,只需要四个随机放置的校准板,通过估计每个校准板的位置来实现。首先,我们定义了 AVM 误差,并确定了最小化估计位置误差的参数。然后,我们通过使用真实大小的车辆和儿童电动汽车进行实验来评估所提出方法的准确性,结果表明,无论车辆大小如何,所提出的方法都可以生成类似于传统 AVM 校准方法的 AVM 图像。