Suppr超能文献

用于高级驾驶辅助系统的目标检测、识别和跟踪算法——近期趋势研究

Object Detection, Recognition, and Tracking Algorithms for ADASs-A Study on Recent Trends.

作者信息

Malligere Shivanna Vinay, Guo Jiun-In

机构信息

Department of Electrical Engineering, Institute of Electronics, National Yang-Ming Chiao Tung University, Hsinchu City 30010, Taiwan.

Pervasive Artificial Intelligence Research (PAIR) Labs, National Yang Ming Chiao Tung University, Hsinchu City 30010, Taiwan.

出版信息

Sensors (Basel). 2023 Dec 31;24(1):249. doi: 10.3390/s24010249.

Abstract

Advanced driver assistance systems (ADASs) are becoming increasingly common in modern-day vehicles, as they not only improve safety and reduce accidents but also aid in smoother and easier driving. ADASs rely on a variety of sensors such as cameras, radars, lidars, and a combination of sensors, to perceive their surroundings and identify and track objects on the road. The key components of ADASs are object detection, recognition, and tracking algorithms that allow vehicles to identify and track other objects on the road, such as other vehicles, pedestrians, cyclists, obstacles, traffic signs, traffic lights, etc. This information is then used to warn the driver of potential hazards or used by the ADAS itself to take corrective actions to avoid an accident. This paper provides a review of prominent state-of-the-art object detection, recognition, and tracking algorithms used in different functionalities of ADASs. The paper begins by introducing the history and fundamentals of ADASs followed by reviewing recent trends in various ADAS algorithms and their functionalities, along with the datasets employed. The paper concludes by discussing the future of object detection, recognition, and tracking algorithms for ADASs. The paper also discusses the need for more research on object detection, recognition, and tracking in challenging environments, such as those with low visibility or high traffic density.

摘要

先进驾驶辅助系统(ADAS)在现代车辆中越来越普遍,因为它们不仅能提高安全性、减少事故,还有助于实现更平稳、轻松的驾驶。ADAS依靠各种传感器,如摄像头、雷达、激光雷达以及传感器组合,来感知周围环境并识别和跟踪道路上的物体。ADAS的关键组件是目标检测、识别和跟踪算法,这些算法使车辆能够识别和跟踪道路上的其他物体,如其他车辆、行人、骑自行车的人、障碍物、交通标志、交通信号灯等。然后,这些信息用于警告驾驶员潜在危险,或由ADAS自身采取纠正措施以避免事故。本文综述了用于ADAS不同功能的著名的最新目标检测、识别和跟踪算法。本文首先介绍了ADAS的历史和基本原理,接着回顾了各种ADAS算法及其功能的最新趋势,以及所使用的数据集。本文最后讨论了ADAS目标检测、识别和跟踪算法的未来。本文还讨论了在具有挑战性的环境中,如能见度低或交通密度高的环境中,对目标检测、识别和跟踪进行更多研究的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f2/10781282/796adbf836b9/sensors-24-00249-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验