Kassuhn Wanja, Klein Oliver, Darb-Esfahani Silvia, Lammert Hedwig, Handzik Sylwia, Taube Eliane T, Schmitt Wolfgang D, Keunecke Carlotta, Horst David, Dreher Felix, George Joshy, Bowtell David D, Dorigo Oliver, Hummel Michael, Sehouli Jalid, Blüthgen Nils, Kulbe Hagen, Braicu Elena I
Tumorbank Ovarian Cancer Network, ENGOT biobank, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
Department of Gynecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizi Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, 13353 Berlin, Germany.
Cancers (Basel). 2021 Mar 25;13(7):1512. doi: 10.3390/cancers13071512.
Despite the correlation of clinical outcome and molecular subtypes of high-grade serous ovarian cancer (HGSOC), contemporary gene expression signatures have not been implemented in clinical practice to stratify patients for targeted therapy. Hence, we aimed to examine the potential of unsupervised matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) to stratify patients who might benefit from targeted therapeutic strategies. Molecular subtyping of paraffin-embedded tissue samples from 279 HGSOC patients was performed by NanoString analysis (ground truth labeling). Next, we applied MALDI-IMS paired with machine-learning algorithms to identify distinct mass profiles on the same paraffin-embedded tissue sections and distinguish HGSOC subtypes by proteomic signature. Finally, we devised a novel approach to annotate spectra of stromal origin. We elucidated a MALDI-derived proteomic signature (135 peptides) able to classify HGSOC subtypes. Random forest classifiers achieved an area under the curve (AUC) of 0.983. Furthermore, we demonstrated that the exclusion of stroma-associated spectra provides tangible improvements to classification quality (AUC = 0.988). Moreover, novel MALDI-based stroma annotation achieved near-perfect classifications (AUC = 0.999). Here, we present a concept integrating MALDI-IMS with machine-learning algorithms to classify patients according to distinct molecular subtypes of HGSOC. This has great potential to assign patients for personalized treatment.
尽管高级别浆液性卵巢癌(HGSOC)的临床结局与分子亚型存在相关性,但当代基因表达特征尚未在临床实践中用于对患者进行分层以实施靶向治疗。因此,我们旨在研究无监督基质辅助激光解吸/电离成像质谱(MALDI-IMS)对可能从靶向治疗策略中获益的患者进行分层的潜力。通过NanoString分析(金标准标记)对279例HGSOC患者的石蜡包埋组织样本进行分子分型。接下来,我们将MALDI-IMS与机器学习算法相结合,以识别同一石蜡包埋组织切片上不同的质谱图,并通过蛋白质组学特征区分HGSOC亚型。最后,我们设计了一种新方法来注释基质来源的光谱。我们阐明了一种能够对HGSOC亚型进行分类的MALDI衍生蛋白质组学特征(135个肽段)。随机森林分类器的曲线下面积(AUC)达到0.983。此外,我们证明排除与基质相关的光谱可显著提高分类质量(AUC = 0.988)。此外,基于MALDI的新型基质注释实现了近乎完美的分类(AUC = 0.999)。在此,我们提出了一种将MALDI-IMS与机器学习算法相结合的概念,以根据HGSOC的不同分子亚型对患者进行分类。这对于为患者分配个性化治疗具有巨大潜力。