Suppr超能文献

使用基质辅助激光解吸电离质谱成像结合神经网络对胰腺导管腺癌进行分类

Classification of Pancreatic Ductal Adenocarcinoma Using MALDI Mass Spectrometry Imaging Combined with Neural Networks.

作者信息

Kanter Frederic, Lellmann Jan, Thiele Herbert, Kalloger Steve, Schaeffer David F, Wellmann Axel, Klein Oliver

机构信息

Institute of Mathematics and Image Computing, Universität zu Lübeck, 23562 Luebeck, Germany.

Fraunhofer Institute for Digital Medicine MEVIS, 23562 Luebeck, Germany.

出版信息

Cancers (Basel). 2023 Jan 22;15(3):686. doi: 10.3390/cancers15030686.

Abstract

Despite numerous diagnostic and therapeutic advances, pancreatic ductal adenocarcinoma (PDAC) has a high mortality rate, and is the fourth leading cause of cancer death in developing countries. Besides its increasing prevalence, pancreatic malignancies are characterized by poor prognosis. Omics technologies have potential relevance for PDAC assessment but are time-intensive and relatively cost-intensive and limited by tissue heterogeneity. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can obtain spatially distinct peptide-signatures and enables tumor classification within a feasible time with relatively low cost. While MALDI-MSI data sets are inherently large, machine learning methods have the potential to greatly decrease processing time. We present a pilot study investigating the potential of MALDI-MSI in combination with neural networks, for classification of pancreatic ductal adenocarcinoma. Neural-network models were trained to distinguish between pancreatic ductal adenocarcinoma and other pancreatic cancer types. The proposed methods are able to correctly classify the PDAC types with an accuracy of up to 86% and a sensitivity of 82%. This study demonstrates that machine learning tools are able to identify different pancreatic carcinoma from complex MALDI data, enabling fast prediction of large data sets. Our results encourage a more frequent use of MALDI-MSI and machine learning in histopathological studies in the future.

摘要

尽管在诊断和治疗方面取得了诸多进展,但胰腺导管腺癌(PDAC)的死亡率仍然很高,是发展中国家癌症死亡的第四大主要原因。除了发病率不断上升外,胰腺恶性肿瘤的特点是预后较差。组学技术与PDAC评估具有潜在相关性,但耗时且成本较高,还受组织异质性的限制。基质辅助激光解吸/电离质谱成像(MALDI-MSI)可以获取空间上不同的肽特征,并能在可行的时间内以相对较低的成本实现肿瘤分类。虽然MALDI-MSI数据集本身很大,但机器学习方法有可能大大减少处理时间。我们开展了一项初步研究,探讨MALDI-MSI结合神经网络在胰腺导管腺癌分类中的潜力。训练神经网络模型以区分胰腺导管腺癌和其他胰腺癌类型。所提出的方法能够以高达86%的准确率和82%的灵敏度正确分类PDAC类型。这项研究表明,机器学习工具能够从复杂的MALDI数据中识别出不同的胰腺癌,从而实现对大数据集的快速预测。我们的结果鼓励未来在组织病理学研究中更频繁地使用MALDI-MSI和机器学习。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a68f/9913229/0a40d9e0a080/cancers-15-00686-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验