Suppr超能文献

计算机辅助肿瘤间质定量分析可为直肠癌提供独立的预后指标。

Computer aided quantification of intratumoral stroma yields an independent prognosticator in rectal cancer.

机构信息

Department of Pathology, Radboud Institute for Health Sciences, Radboud University Medical Center, P.O.Box 9101, 6500 HB, Nijmegen, The Netherlands.

Diagnostic Image Analysis Group (DIAG), Radboud University Medical Center, Nijmegen, The Netherlands.

出版信息

Cell Oncol (Dordr). 2019 Jun;42(3):331-341. doi: 10.1007/s13402-019-00429-z. Epub 2019 Mar 1.

Abstract

PURPOSE

Tumor-stroma ratio (TSR) serves as an independent prognostic factor in colorectal cancer and other solid malignancies. The recent introduction of digital pathology in routine tissue diagnostics holds opportunities for automated TSR analysis. We investigated the potential of computer-aided quantification of intratumoral stroma in rectal cancer whole-slide images.

METHODS

Histological slides from 129 rectal adenocarcinoma patients were analyzed by two experts who selected a suitable stroma hot-spot and visually assessed TSR. A semi-automatic method based on deep learning was trained to segment all relevant tissue types in rectal cancer histology and subsequently applied to the hot-spots provided by the experts. Patients were assigned to a 'stroma-high' or 'stroma-low' group by both TSR methods (visual and automated). This allowed for prognostic comparison between the two methods in terms of disease-specific and disease-free survival times.

RESULTS

With stroma-low as baseline, automated TSR was found to be prognostic independent of age, gender, pT-stage, lymph node status, tumor grade, and whether adjuvant therapy was given, both for disease-specific survival (hazard ratio = 2.48 (95% confidence interval 1.29-4.78)) and for disease-free survival (hazard ratio = 2.05 (95% confidence interval 1.11-3.78)). Visually assessed TSR did not serve as an independent prognostic factor in multivariate analysis.

CONCLUSIONS

This work shows that TSR is an independent prognosticator in rectal cancer when assessed automatically in user-provided stroma hot-spots. The deep learning-based technology presented here may be a significant aid to pathologists in routine diagnostics.

摘要

目的

肿瘤基质比(TSR)可作为结直肠癌和其他实体恶性肿瘤的独立预后因素。数字病理学最近在常规组织诊断中的引入为自动 TSR 分析提供了机会。我们研究了计算机辅助定量分析直肠癌全切片图像中肿瘤内基质的潜力。

方法

对 129 例直肠腺癌患者的组织切片进行了分析,由两位专家选择合适的基质热点,并进行 TSR 视觉评估。一种基于深度学习的半自动方法被训练来分割直肠癌组织学中的所有相关组织类型,并随后应用于专家提供的热点。通过两种 TSR 方法(视觉和自动)将患者分为“基质高”或“基质低”组。这允许根据两种方法在疾病特异性和无病生存时间方面的预后进行比较。

结果

以基质低为基线,自动 TSR 被发现与年龄、性别、pT 分期、淋巴结状态、肿瘤分级以及是否给予辅助治疗无关,对疾病特异性生存(危险比=2.48(95%置信区间 1.29-4.78))和无病生存(危险比=2.05(95%置信区间 1.11-3.78))均具有预后意义。视觉评估的 TSR 在多变量分析中不是独立的预后因素。

结论

这项工作表明,在用户提供的基质热点中自动评估时,TSR 是直肠癌的独立预后因素。本文提出的基于深度学习的技术可能是病理学家常规诊断的重要辅助手段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验