Suppr超能文献

仅基于SCADA数据的风力发电机组主轴承故障预测

Wind Turbine Main Bearing Fault Prognosis Based Solely on SCADA Data.

作者信息

Encalada-Dávila Ángel, Puruncajas Bryan, Tutivén Christian, Vidal Yolanda

机构信息

Mechatronics Engineering, Faculty of Mechanical Engineering and Production Science (FIMCP), Campus Gustavo Galindol, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Km. 30.5 Vía Perimetral, Guayaquil 090112, Ecuador.

Control, Modeling, Identification and Applications (CoDAlab), Department of Mathematics, Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besós (CDB), Universitat Politècnica de Catalunya (UPC), Eduard Maristany, 16, 08019 Barcelona, Spain .

出版信息

Sensors (Basel). 2021 Mar 23;21(6):2228. doi: 10.3390/s21062228.

Abstract

As stated by the European Academy of Wind Energy (EAWE), the wind industry has identified main bearing failures as a critical issue in terms of increasing wind turbine reliability and availability. This is owing to major repairs with high replacement costs and long downtime periods associated with main bearing failures. Thus, the main bearing fault prognosis has become an economically relevant topic and is a technical challenge. In this work, a data-based methodology for fault prognosis is presented. The main contributions of this work are as follows: (i) Prognosis is achieved by using only supervisory control and data acquisition (SCADA) data, which is already available in all industrial-sized wind turbines; thus, no extra sensors that are designed for a specific purpose need to be installed. (ii) The proposed method only requires healthy data to be collected; thus, it can be applied to any wind farm even when no faulty data has been recorded. (iii) The proposed algorithm works under different and varying operating and environmental conditions. (iv) The validity and performance of the established methodology is demonstrated on a real underproduction wind farm consisting of 12 wind turbines. The obtained results show that advanced prognostic systems based solely on SCADA data can predict failures several months prior to their occurrence and allow wind turbine operators to plan their operations.

摘要

正如欧洲风能协会(EAWE)所述,就提高风力涡轮机的可靠性和可用性而言,风力发电行业已将主轴承故障确定为一个关键问题。这是由于主轴承故障会带来高额的维修成本和较长的停机时间。因此,主轴承故障预测已成为一个具有经济意义的课题,并且是一项技术挑战。在这项工作中,提出了一种基于数据的故障预测方法。这项工作的主要贡献如下:(i)仅使用监控与数据采集(SCADA)数据即可实现预测,所有工业规模的风力涡轮机都已具备这些数据;因此,无需安装专门设计的额外传感器。(ii)所提出的方法仅需要收集正常数据;因此,即使没有记录到故障数据,它也可以应用于任何风电场。(iii)所提出的算法在不同且变化的运行和环境条件下都能工作。(iv)在一个由12台风力涡轮机组成的实际未达产风电场中验证了所建立方法的有效性和性能。所得结果表明,仅基于SCADA数据的先进预测系统可以在故障发生前几个月预测故障,并使风力涡轮机运营商能够规划其运营。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692d/8004597/47d9e08ed666/sensors-21-02228-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验