Dumitru Delia, Dioșan Laura, Andreica Anca, Bálint Zoltán
IMOGEN Research Institute, County Clinical Emergency Hospital, 400006 Cluj-Napoca, Romania.
Faculty of Mathematics and Computer Science, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania.
Entropy (Basel). 2021 Mar 31;23(4):414. doi: 10.3390/e23040414.
Edge detection is a fundamental image analysis task, as it provides insight on the content of an image. There are weaknesses in some of the edge detectors developed until now, such as disconnected edges, the impossibility to detect branching edges, or the need for a ground truth that is not always accessible. Therefore, a specialized detector that is optimized for the image particularities can help improve edge detection performance. In this paper, we apply transfer learning to optimize cellular automata (CA) rules for edge detection using particle swarm optimization (PSO). Cellular automata provide fast computation, while rule optimization provides adaptability to the properties of the target images. We use transfer learning from synthetic to medical images because expert-annotated medical data is typically difficult to obtain. We show that our method is tunable for medical images with different properties, and we show that, for more difficult edge detection tasks, batch optimization can be used to boost the quality of the edges. Our method is suitable for the identification of structures, such as cardiac cavities on medical images, and could be used as a component of an automatic radiology decision support tool.
边缘检测是一项基本的图像分析任务,因为它能提供有关图像内容的见解。到目前为止开发的一些边缘检测器存在弱点,比如边缘不连续、无法检测分支边缘,或者需要一个并非总能获取的真实数据。因此,针对图像特性进行优化的专用检测器有助于提高边缘检测性能。在本文中,我们应用迁移学习,使用粒子群优化算法(PSO)来优化用于边缘检测的细胞自动机(CA)规则。细胞自动机提供快速计算,而规则优化则使检测器能够适应目标图像的特性。我们使用从合成图像到医学图像的迁移学习,因为通常很难获得专家标注的医学数据。我们表明,我们的方法可针对具有不同特性的医学图像进行调整,并且我们还表明,对于更困难的边缘检测任务,可以使用批量优化来提高边缘质量。我们的方法适用于识别医学图像上的结构,如心脏腔室,并且可以用作自动放射学决策支持工具的一个组件。