Gonçalves Adriana, Almeida Filipe V, Borges João Paulo, Soares Paula I P
CENIMAT/i3N, Materials Science Department, NOVA School of Science and Technology, Campus da Caparica, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
Gels. 2021 Mar 5;7(1):28. doi: 10.3390/gels7010028.
The delivery of multiple anti-cancer agents holds great promise for better treatments. The present work focuses on developing multifunctional materials for simultaneous and local combinatory treatment: Chemotherapy and hyperthermia. We first produced hybrid microgels (MG), synthesized by surfactant-free emulsion polymerization, consisting of Poly (-isopropyl acrylamide) (PNIPAAm), chitosan (40 wt.%), and iron oxide nanoparticles (NPs) (5 wt.%) as the inorganic component. PNIPAAm MGs with a hydrodynamic diameter of about 1 μm (in their swollen state) were successfully synthesized. With the incorporation of chitosan and NPs in PNIPAAm MG, a decrease in MG diameter and swelling capacity was observed, without affecting their thermosensitivity. We then sought to produce biocompatible and mechanically robust membranes containing these dual-responsive MG. To achieve this, MG were incorporated in poly (vinyl pyrrolidone) (PVP) fibers through colloidal electrospinning. The presence of NPs in MG decreases the membrane swelling ratio from 10 to values between 6 and 7, and increases the material stiffness, raising its Young modulus from 20 to 35 MPa. Furthermore, magnetic hyperthermia assay shows that PVP-MG-NP composites perform better than any other formulation, with a temperature variation of about 1 °C. The present work demonstrates the potential of using multifunctional colloidal membranes for magnetic hyperthermia and may in the future be used as an alternative treatment for cancer.
递送多种抗癌药物有望实现更好的治疗效果。目前的工作重点是开发用于同步和局部联合治疗的多功能材料:化疗和热疗。我们首先制备了混合微凝胶(MG),通过无表面活性剂乳液聚合合成,由聚(N-异丙基丙烯酰胺)(PNIPAAm)、壳聚糖(40 wt.%)和作为无机组分的氧化铁纳米颗粒(NPs)(5 wt.%)组成。成功合成了流体动力学直径约为1μm(处于溶胀状态)的PNIPAAm微凝胶。在PNIPAAm微凝胶中加入壳聚糖和纳米颗粒后,观察到微凝胶直径和溶胀能力降低,而不影响其热敏感性。然后,我们试图制备含有这些双响应微凝胶的生物相容性和机械强度高的膜。为此,通过胶体静电纺丝将微凝胶掺入聚(乙烯基吡咯烷酮)(PVP)纤维中。微凝胶中纳米颗粒的存在使膜的溶胀率从10降低到6至7之间的值,并提高了材料的刚度,使其杨氏模量从20 MPa提高到35 MPa。此外,磁热疗试验表明,PVP-MG-NP复合材料的性能优于任何其他配方,温度变化约为1℃。目前的工作证明了使用多功能胶体膜进行磁热疗的潜力,未来可能用作癌症的替代治疗方法。