Suppr超能文献

基于视觉的单目标在机器人定位系统中的应用。

Application of a Vision-Based Single Target on Robot Positioning System.

机构信息

School of Metrology and Test Engineering, China Jiliang University, Hangzhou 310018, China.

出版信息

Sensors (Basel). 2021 Mar 5;21(5):1829. doi: 10.3390/s21051829.

Abstract

In this paper, we propose a Circular-ring visual location marker based on a global image-matching model to improve the positioning ability in the fiducial marker system of a single-target mobile robot. The unique coding information is designed according to the cross-ratio invariance of the projective theorem. To verify the accuracy of full 6D pose estimation using the Circular-ring marker, a 6 degree of freedom (DoF) robotic arm platform is used to design a visual location experiment. The experimental result shows in terms of small resolution images, different size markers, and long-distance tests that our proposed robot positioning method significantly outperforms AprilTag, ArUco, and Checkerboard. Furthermore, through a repeatable robot positioning experiment, the results indicated that the proposed Circular-ring marker is twice as accurate as the fiducial marker at 2-4 m. In terms of recognition speed, the Circular-ring marker processes a frame within 0.077 s. When the Circular-ring marker is used for robot positioning at 2-4 m, the maximum average translation error of the Circular-ring marker is 2.19, 3.04, and 9.44 mm. The maximum average rotation error is also 1.703°, 1.468°, and 0.782°.

摘要

本文提出了一种基于全局图像匹配模型的环形视觉定位标记,以提高单目标移动机器人基准标记系统的定位能力。独特的编码信息是根据投影定理的交比不变性设计的。为了验证使用环形标记进行全 6D 位姿估计的准确性,使用 6 自由度(DoF)机械臂平台设计了视觉定位实验。实验结果表明,在小分辨率图像、不同大小的标记和远距离测试中,我们提出的机器人定位方法明显优于 AprilTag、ArUco 和 Checkerboard。此外,通过可重复的机器人定位实验,结果表明,在 2-4 米的范围内,所提出的环形标记比基准标记的精度高两倍。在识别速度方面,环形标记在 0.077 秒内处理一帧。当环形标记用于 2-4 米的机器人定位时,环形标记的最大平均平移误差为 2.19、3.04 和 9.44 毫米。最大平均旋转误差也分别为 1.703°、1.468°和 0.782°。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c948/7961800/16b2af88d64b/sensors-21-01829-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验