Suppr超能文献

基于视觉与惯性传感器组合的移动机器人室内定位

Mobile Robot Indoor Positioning Based on a Combination of Visual and Inertial Sensors.

作者信息

Gao Mingjing, Yu Min, Guo Hang, Xu Yuan

机构信息

Institute of Space Science and Technology, Nanchang University, Nanchang 330031, China.

College of Computer Information and Engineering, Jiangxi Normal University, Nanchang 330022, China.

出版信息

Sensors (Basel). 2019 Apr 13;19(8):1773. doi: 10.3390/s19081773.

Abstract

Multi-sensor integrated navigation technology has been applied to the indoor navigation and positioning of robots. For the problems of a low navigation accuracy and error accumulation, for mobile robots with a single sensor, an indoor mobile robot positioning method based on a visual and inertial sensor combination is presented in this paper. First, the visual sensor (Kinect) is used to obtain the color image and the depth image, and feature matching is performed by the improved scale-invariant feature transform (SIFT) algorithm. Then, the absolute orientation algorithm is used to calculate the rotation matrix and translation vector of a robot in two consecutive frames of images. An inertial measurement unit (IMU) has the advantages of high frequency updating and rapid, accurate positioning, and can compensate for the Kinect speed and lack of precision. Three-dimensional data, such as acceleration, angular velocity, magnetic field strength, and temperature data, can be obtained in real-time with an IMU. The data obtained by the visual sensor is loosely combined with that obtained by the IMU, that is, the differences in the positions and attitudes of the two sensor outputs are optimally combined by the adaptive fade-out extended Kalman filter to estimate the errors. Finally, several experiments show that this method can significantly improve the accuracy of the indoor positioning of the mobile robots based on the visual and inertial sensors.

摘要

多传感器集成导航技术已应用于机器人的室内导航与定位。针对单传感器移动机器人导航精度低和误差累积的问题,本文提出了一种基于视觉与惯性传感器组合的室内移动机器人定位方法。首先,利用视觉传感器(Kinect)获取彩色图像和深度图像,并通过改进的尺度不变特征变换(SIFT)算法进行特征匹配。然后,使用绝对定向算法计算机器人在连续两帧图像中的旋转矩阵和平移向量。惯性测量单元(IMU)具有高频更新和快速、精确定位的优点,能够弥补Kinect速度和精度不足的问题。通过IMU可实时获取加速度、角速度、磁场强度和温度数据等三维数据。将视觉传感器获取的数据与IMU获取的数据进行松耦合,即通过自适应渐消扩展卡尔曼滤波器对两个传感器输出的位置和姿态差异进行最优组合以估计误差。最后,多个实验表明该方法能显著提高基于视觉和惯性传感器的移动机器人室内定位精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3feb/6515221/98437e272ee8/sensors-19-01773-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验