Doineau Estelle, Cathala Bernard, Benezet Jean-Charles, Bras Julien, Le Moigne Nicolas
Polymers Composites and Hybrids (PCH), IMT Mines Alès, 30100 Alès, France.
Institute of Engineering, Université Grenoble Alpes, CNRS, Grenoble INP, LGP2, 38000 Grenoble, France.
Polymers (Basel). 2021 Mar 5;13(5):804. doi: 10.3390/polym13050804.
Several naturally occurring biological systems, such as bones, nacre or wood, display hierarchical architectures with a central role of the nanostructuration that allows reaching amazing properties such as high strength and toughness. Developing such architectures in man-made materials is highly challenging, and recent research relies on this concept of hierarchical structures to design high-performance composite materials. This review deals more specifically with the development of hierarchical fibres by the deposition of nano-objects at their surface to tailor the fibre/matrix interphase in (bio)composites. Fully synthetic hierarchical fibre reinforced composites are described, and the potential of hierarchical fibres is discussed for the development of sustainable biocomposite materials with enhanced structural performance. Based on various surface, microstructural and mechanical characterizations, this review highlights that nano-objects coated on natural fibres (carbon nanotubes, ZnO nanowires, nanocelluloses) can improve the load transfer and interfacial adhesion between the matrix and the fibres, and the resulting mechanical performances of biocomposites. Indeed, the surface topography of the fibres is modified with higher roughness and specific surface area, implying increased mechanical interlocking with the matrix. As a result, the interfacial shear strength (IFSS) between fibres and polymer matrices is enhanced, and failure mechanisms can be modified with a crack propagation occurring through a zig-zag path along interphases.
一些天然存在的生物系统,如骨骼、珍珠母或木材,呈现出层次结构,其中纳米结构起着核心作用,使这些生物系统具有诸如高强度和高韧性等惊人特性。在人造材料中开发这样的结构极具挑战性,近期的研究依赖于这种层次结构的概念来设计高性能复合材料。本综述更具体地探讨了通过在纤维表面沉积纳米物体来开发层次结构纤维,以调整(生物)复合材料中纤维/基体界面相的情况。文中描述了全合成的层次结构纤维增强复合材料,并讨论了层次结构纤维在开发具有增强结构性能的可持续生物复合材料方面的潜力。基于各种表面、微观结构和力学表征,本综述强调,涂覆在天然纤维(碳纳米管、氧化锌纳米线、纳米纤维素)上的纳米物体可以改善基体与纤维之间的载荷传递和界面粘附,以及由此产生的生物复合材料的力学性能。实际上,纤维的表面形貌因粗糙度增加和比表面积增大而发生改变,这意味着与基体的机械互锁增强。结果,纤维与聚合物基体之间的界面剪切强度(IFSS)得以提高,并且失效机制可能会改变,裂纹沿着界面相以之字形路径扩展。