Polymers Composites and Hybrids (PCH), IMT Mines Ales, Ales, France(1); Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LGP2, F-38000, Grenoble, France(1); INRAE, UR BIA, F-44316, Nantes, France(1).
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LGP2, F-38000, Grenoble, France(1).
Carbohydr Polym. 2021 Feb 15;254:117403. doi: 10.1016/j.carbpol.2020.117403. Epub 2020 Nov 27.
This work is focused on the modification of the interphase zone in short flax fibres / polypropylene (PP) composites by a bio-inspired modification of fibres called "nanostructuration" that uses the adsorption of biomass by-products, i.e. cellulose nanocrystals (CNC) and xyloglucan (XG), to create hierarchical flax fibres. The wettability and interfacial adhesion study reveals a strong decrease in the polar character of CNC modified flax fibres, hence increasing the work of adhesion with PP. Moreover, combining XG/CNC modified interphases with MAPP coupling agent enhances the ultimate mechanical properties of biocomposites with higher tensile strength and work of rupture, and modifies failure mechanisms as revealed by in situ micro-mechanical tensile SEM experiments. Bio-based hierarchical composites inspired by naturally occurring nanostructures open a new path for the development of sustainable composites with enhanced structural properties.
这项工作专注于通过一种称为“纳米结构化”的纤维仿生改性来修饰短麻纤维/聚丙烯(PP)复合材料的相间区,该方法利用生物质副产物(即纤维素纳米晶(CNC)和木葡聚糖(XG))的吸附来制造分层麻纤维。润湿性和界面粘附研究表明,CNC 改性麻纤维的极性明显降低,从而增加了与 PP 的粘附功。此外,将 XG/CNC 改性界面与 MAPP 偶联剂结合使用,可提高具有更高拉伸强度和断裂功的生物复合材料的最终力学性能,并通过原位微机械拉伸 SEM 实验揭示的失效机制进行改性。受天然存在的纳米结构启发的基于生物的分层复合材料为开发具有增强结构性能的可持续复合材料开辟了新途径。