Suppr超能文献

管道长期性能的初步分析:老化与蠕变效应

Preliminary Analysis of Long-Term Performance of a Piping: Aging and Creep Effects.

作者信息

Cancemi Salvatore Angelo, Lo Frano Rosa

机构信息

Department of Industrial and Civil Engineering (DICI), University of Pisa, 56126 Pisa, Italy.

出版信息

Materials (Basel). 2021 Mar 30;14(7):1703. doi: 10.3390/ma14071703.

Abstract

Combining global experience, comprehensive aging knowledge, and predictive methodologies provides ideal prerequisites for the long-term operation strategy (LTO) of a nuclear power plant (NPP). Applying management strategies with an understanding of the ways in which structures relevant for the plant safety perform and interact in their operating environments is of meaningful importance for operating the plant beyond its originally licensed service life. In performing aging studies on the nuclear systems, structure, and components (SSCs), the results are crucial for demonstrating the safety and reliability of the NPP beyond 30 years of nominal operation. In this study, the synergistic effect of a creep mechanism with the alteration suffered by piping material is analyzed by means of MSC©MARC finite element code. Nonlinear analyses were performed to calculate the effects of the long operational period on a primary pipe, assess its degradation, and determine its residual functionality. In these analyses, both homogeneous and inhomogeneous pipe wall thinning are considered, as well as the operating or expected thermal-mechanical loads. The obtained results indicate that thermo-mechanical loads are responsible for pipe deformation, which develops and increases as the transient progresses. Furthermore, an excessive (general or local) wall thinning may determine a dimensional change of the pipe, even causing bending or buckling.

摘要

结合全球经验、全面的老化知识和预测方法,为核电站(NPP)的长期运行策略(LTO)提供了理想的先决条件。在理解与核电站安全相关的结构在其运行环境中的性能和相互作用方式的基础上应用管理策略,对于核电站在其最初许可的使用寿命之后继续运行具有重要意义。在对核系统、结构和部件(SSC)进行老化研究时,结果对于证明核电站在30年名义运行期之后的安全性和可靠性至关重要。在本研究中,借助MSC©MARC有限元代码分析了蠕变机制与管道材料所遭受变化的协同效应。进行了非线性分析,以计算长期运行对主管道的影响,评估其退化情况,并确定其剩余功能。在这些分析中,考虑了均匀和非均匀的管壁减薄,以及运行或预期的热机械载荷。所得结果表明,热机械载荷是管道变形的原因,随着瞬态过程的推进,变形会发展并加剧。此外,过度(整体或局部)的管壁减薄可能会导致管道尺寸变化,甚至引起弯曲或屈曲。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/208a/8038101/a8114f3d5c28/materials-14-01703-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验