综合虚拟筛选海洋多环胍类生物碱对 SARS-CoV-2(COVID-19)的抗病毒潜力。
Comprehensive Virtual Screening of the Antiviral Potentialities of Marine Polycyclic Guanidine Alkaloids against SARS-CoV-2 (COVID-19).
机构信息
Metabolic Biology & Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
出版信息
Biomolecules. 2021 Mar 19;11(3):460. doi: 10.3390/biom11030460.
The huge global expansion of the COVID-19 pandemic caused by the novel SARS-corona virus-2 is an extraordinary public health emergency. The unavailability of specific treatment against SARS-CoV-2 infection necessitates the focus of all scientists in this direction. The reported antiviral activities of guanidine alkaloids encouraged us to run a comprehensive in silico binding affinity of fifteen guanidine alkaloids against five different proteins of SARS-CoV-2, which we investigated. The investigated proteins are COVID-19 main protease (M) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and a non-structural protein (nsp10) (PDB ID: 6W4H). The binding energies for all tested compounds indicated promising binding affinities. A noticeable superiority for the pentacyclic alkaloids particularly, crambescidin 786 () and crambescidin 826 () has been observed. Compound exhibited very good binding affinities against Mpro (ΔG = -8.05 kcal/mol), nucleocapsid phosphoprotein (ΔG = -6.49 kcal/mol), and nsp10 (ΔG = -9.06 kcal/mol). Compound showed promising binding affinities against M (ΔG = -7.99 kcal/mol), spike glycoproteins (ΔG = -6.95 kcal/mol), and nucleocapsid phosphoprotein (ΔG = -8.01 kcal/mol). Such promising activities might be attributed to the long ω-fatty acid chain, which may play a vital role in binding within the active sites. The correlation of c Log P with free binding energies has been calculated. Furthermore, the SAR of the active compounds has been clarified. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) studies were carried out in silico for the 15 compounds; most examined compounds showed optimal to good range levels of ADMET aqueous solubility, intestinal absorption and being unable to pass blood brain barrier (BBB), non-inhibitors of CYP2D6, non-hepatotoxic, and bind plasma protein with a percentage less than 90%. The toxicity of the tested compounds was screened in silico against five models (FDA rodent carcinogenicity, carcinogenic potency TD, rat maximum tolerated dose, rat oral LD, and rat chronic lowest observed adverse effect level (LOAEL)). All compounds showed expected low toxicity against the tested models. Molecular dynamic (MD) simulations were also carried out to confirm the stable binding interactions of the most promising compounds, and with their targets. In conclusion, the examined 15 alkaloids specially and showed promising docking, ADMET, toxicity and MD results which open the door for further investigations for them against SARS-CoV-2.
由新型 SARS-CoV-2 引起的 COVID-19 大流行在全球范围内迅速蔓延,这是一场罕见的公共卫生紧急事件。目前尚无针对 SARS-CoV-2 感染的特效治疗方法,这促使所有科学家都集中精力研究这一方向。胍类生物碱的抗病毒活性报告鼓励我们对 15 种胍类生物碱针对我们研究的 5 种不同 SARS-CoV-2 蛋白的综合计算机结合亲和力进行研究。研究的蛋白是 COVID-19 主蛋白酶(M)(PDB ID:6lu7)、刺突糖蛋白(PDB ID:6VYB)、核衣壳磷蛋白(PDB ID:6VYO)、膜糖蛋白(PDB ID:6M17)和非结构蛋白(nsp10)(PDB ID:6W4H)。所有测试化合物的结合能都表明具有良好的结合亲和力。五环生物碱,特别是 crambescidin 786()和 crambescidin 826()表现出明显的优势。化合物 对 Mpro(ΔG = -8.05 kcal/mol)、核衣壳磷蛋白(ΔG = -6.49 kcal/mol)和 nsp10(ΔG = -9.06 kcal/mol)表现出非常好的结合亲和力。化合物 对 M(ΔG = -7.99 kcal/mol)、刺突糖蛋白(ΔG = -6.95 kcal/mol)和核衣壳磷蛋白(ΔG = -8.01 kcal/mol)表现出良好的结合亲和力。这种良好的活性可能归因于长的 ω-脂肪酸链,它可能在活性部位的结合中发挥重要作用。已计算了 c Log P 与自由结合能的相关性。此外,还阐明了活性化合物的 SAR。对 15 种化合物进行了计算机模拟的吸收、分布、代谢、排泄和毒性(ADMET)研究;大多数被检查的化合物在 ADMET 水溶解度、肠吸收和不能通过血脑屏障(BBB)、不抑制 CYP2D6、非肝毒性以及与血浆蛋白结合的百分比低于 90%方面表现出最佳至良好的水平。在计算机上筛选了测试化合物对五个模型(FDA 啮齿动物致癌性、致癌潜力 TD、大鼠最大耐受剂量、大鼠口服 LD 和大鼠慢性最低观察到的不良效应水平(LOAEL))的毒性。所有化合物对测试模型均表现出预期的低毒性。还进行了分子动力学(MD)模拟,以确认最有前途的化合物 和 与它们的靶标之间的稳定结合相互作用。总之,所检查的 15 种生物碱,特别是 和 ,表现出有希望的对接、ADMET、毒性和 MD 结果,为它们针对 SARS-CoV-2 的进一步研究开辟了道路。