Suppr超能文献

衡量个性化医疗融入美国医疗服务机构的定量框架。

A Quantitative Framework for Measuring Personalized Medicine Integration into US Healthcare Delivery Organizations.

作者信息

Agarwal Arushi, Pritchard Daryl, Gullett Laura, Amanti Kristen Garner, Gustavsen Gary

机构信息

Health Advances LLC, San Francisco, CA 94105, USA.

Personalized Medicine Coalition, Washington, DC 20036, USA.

出版信息

J Pers Med. 2021 Mar 12;11(3):196. doi: 10.3390/jpm11030196.

Abstract

Personalized medicine (PM) approaches have revolutionized healthcare delivery by offering new insights that enable healthcare providers to select the optimal treatment approach for their patients. However, despite the consensus that these approaches have significant value, implementation across the US is highly variable. In order to address barriers to widespread PM adoption, a comprehensive and methodical approach to assessing the current level of PM integration within a given organization and the broader healthcare system is needed. A quantitative framework encompassing a multifactorial approach to assessing PM adoption has been developed and used to generate a rating of PM integration in 153 organizations across the US. The results suggest significant heterogeneity in adoption levels but also some consistent themes in what defines a high-performing organization, including the sophistication of data collected, data sharing practices, and the level of internal funding committed to supporting PM initiatives. A longitudinal approach to data collection will be valuable to track continued progress and adapt to new challenges and barriers to PM adoption as they arise.

摘要

个性化医疗(PM)方法通过提供新的见解彻底改变了医疗服务的提供方式,使医疗服务提供者能够为患者选择最佳治疗方法。然而,尽管人们一致认为这些方法具有重大价值,但在美国各地的实施情况却存在很大差异。为了解决广泛采用个性化医疗的障碍,需要一种全面、系统的方法来评估特定组织和更广泛医疗系统中个性化医疗整合的当前水平。已经开发了一个包含多因素方法的定量框架来评估个性化医疗的采用情况,并用于对美国153个组织的个性化医疗整合进行评级。结果表明,采用水平存在显著异质性,但在定义高绩效组织方面也有一些一致的主题,包括所收集数据的复杂性、数据共享实践以及为支持个性化医疗计划而投入的内部资金水平。纵向数据收集方法对于跟踪持续进展以及适应新出现的个性化医疗采用的新挑战和障碍将是有价值的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e815/8000405/9d8aa8e1b192/jpm-11-00196-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验