Uklejewski Ryszard, Winiecki Mariusz, Patalas Adam, Rogala Piotr
Chair of Construction Materials and Biomaterials, Institute of Materials Engineering, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland.
Laboratory of Bone Implants Research and Design, Department of Technology Design, Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznan, Poland.
Materials (Basel). 2021 Mar 12;14(6):1384. doi: 10.3390/ma14061384.
Our team has been working for some time on designing a new kind of biomimetic fixation of resurfacing endoprostheses, in which the innovative multi-spiked connecting scaffold (MSC-Scaffold) that mimics the natural interface between articular cartilage and periarticular trabecular bone in human joints is the crucial element. This work aimed to develop a numerical model enabling the design of the considered joint replacement implant that would reflect the mechanics of interacting biomaterials. Thus, quantitative micro-CT analysis of density distribution in bone material during the embedding of MSC-Scaffold in periarticular bone was applied. The performed numerical studies and corresponding mechanical tests revealed, under the embedded MSC-Scaffold, the bone material densification affecting its mechanical properties. On the basis of these findings, the built numerical model was modified by applying a simulated insert of densified bone material. This modification led to a strong correlation between the re-simulation and experimental results (FVU = 0.02). The biomimetism of the MSC-Scaffold prototype that provided physiological load transfer from implant to bone was confirmed based on the Huber-von Mises-Hencky (HMH) stress maps obtained with the validated finite element (FE) model of the problem. The micro-CT bone density assessment performed during the embedding of the MSC-Scaffold prototype in periarticular bone provides insight into the mechanical behaviour of the investigated implant-bone system and validates the numerical model that can be used for the design of material and geometric features of a new kind of resurfacing endoprostheses fixation.
我们的团队已经花了一段时间来设计一种新型的表面置换假体的仿生固定方式,其中创新的多钉连接支架(MSC支架)是关键要素,它模仿了人体关节中关节软骨与关节周围小梁骨之间的天然界面。这项工作旨在开发一个数值模型,以设计出能反映相互作用的生物材料力学特性的关节置换植入物。因此,应用了定量显微CT分析在将MSC支架植入关节周围骨的过程中骨材料密度分布情况。所进行的数值研究和相应的力学测试表明,在植入的MSC支架下方,骨材料致密化会影响其力学性能。基于这些发现,通过应用模拟的致密骨材料插入物对建立的数值模型进行了修改。这一修改使得重新模拟结果与实验结果之间具有很强的相关性(FVU = 0.02)。基于用经过验证的该问题有限元(FE)模型获得的胡贝尔 - 冯·米塞斯 - 亨基(HMH)应力图,证实了MSC支架原型的仿生特性,即它能实现从植入物到骨的生理载荷传递。在将MSC支架原型植入关节周围骨的过程中进行的显微CT骨密度评估,为所研究的植入物 - 骨系统的力学行为提供了深入了解,并验证了可用于设计新型表面置换假体固定的材料和几何特征的数值模型。