Balsalobre-Fernández Carlos, Kipp Kristof
Applied Biomechanics and Sports Technology Research Group, Autonomous University of Madrid, 28049 Madrid, Spain.
Department of Physical Therapy-Program in Exercise Science, Marquette University, Milwaukee, WI 53233, USA.
Sports (Basel). 2021 Mar 16;9(3):39. doi: 10.3390/sports9030039.
The purpose of the current study was to compare the ability of five different methods to estimate eccentric-concentric and concentric-only bench-press 1RM from load-velocity profile data. Smith machine bench-press tests were performed in an eccentric-concentric ( = 192) and a concentric-only manner ( = 176) while mean concentric velocity was registered using a linear position transducer. Load-velocity profiles were derived from incremental submaximal load (40-80% 1RM) tests. Five different methods were used to calculate 1RM using the slope, intercept, and velocity at 1RM (minimum velocity threshold-MVT) from the load-velocity profiles: calculation with individual MVT, calculation with group average MVT, multilinear regression without MVT, regularized regression without MVT, and an artificial neural network without MVT. Mean average errors for all methods ranged from 2.7 to 3.3 kg. Calculations with individual or group MVT resulted in significant overprediction of eccentric-concentric 1RM (individual MVT: difference = 0.76 kg, = 0.020, = 0.17; group MVT: difference = 0.72 kg, = 0.023, = 0.17). The multilinear and regularized regression both resulted in the lowest errors and highest correlations. The results demonstrated that bench-press 1RM can be accurately estimated from load-velocity data derived from submaximal loads and without MVT. In addition, results showed that multilinear regression can be used to estimate bench-press 1RM. Collectively, the findings and resulting equations should be helpful for strength and conditioning coaches as they would help estimating 1RM without MVT data.
本研究的目的是比较五种不同方法根据负荷-速度曲线数据估算离心-向心和仅向心卧推1RM(1次重复最大值)的能力。在离心-向心(n = 192)和仅向心(n = 176)两种方式下进行史密斯机卧推测试,同时使用线性位置传感器记录平均向心速度。负荷-速度曲线由递增次最大负荷(40 - 80% 1RM)测试得出。使用负荷-速度曲线的斜率、截距和1RM处的速度(最小速度阈值-MVT),通过五种不同方法计算1RM:使用个体MVT进行计算、使用组平均MVT进行计算、不使用MVT的多元线性回归、不使用MVT的正则化回归以及不使用MVT的人工神经网络。所有方法的平均误差范围为2.7至3.3千克。使用个体或组MVT进行计算导致离心-向心1RM的显著高估(个体MVT:差异 = 0.76千克,p = 0.020,d = 0.17;组MVT:差异 = 0.72千克,p = 0.023,d = 0.17)。多元线性回归和正则化回归的误差均最低且相关性最高。结果表明,卧推1RM可根据次最大负荷得出的负荷-速度数据准确估算,且无需MVT。此外,结果表明多元线性回归可用于估算卧推1RM。总体而言,这些发现和所得方程应有助于体能教练,因为它们有助于在无MVT数据的情况下估算1RM。