Suppr超能文献

一种基于短期RR间期的用于充血性心力衰竭诊断的改进型UNet++模型。

An Improved UNet++ Model for Congestive Heart Failure Diagnosis Using Short-Term RR Intervals.

作者信息

Lei Meng, Li Jia, Li Ming, Zou Liang, Yu Han

机构信息

School of Information and Electrical Control Engineering, China University of Mining and Technology, Xuzhou 221116, China.

School of Computer Science and Engineering (SCSE), Nanyang Technological University (NTU), Singapore 639798, Singapore.

出版信息

Diagnostics (Basel). 2021 Mar 16;11(3):534. doi: 10.3390/diagnostics11030534.

Abstract

Congestive heart failure (CHF), a progressive and complex syndrome caused by ventricular dysfunction, is difficult to detect at an early stage. Heart rate variability (HRV) was proposed as a prognostic indicator for CHF. Inspired by the success of 2-D UNet++ in medical image segmentation, in this paper, we introduce an end-to-end encoder-decoder model to detect CHF using HRV signals. The developed model enhances the UNet++ model with Squeeze-and-Excitation (SE) residual blocks to extract deep features hierarchically and distinguish CHF patients from normal subjects. Two open-source databases are utilized for evaluating the proposed method, and three segment lengths of intervals between successive R-peaks are employed in comparison with state-of-the-art methods. The proposed method achieves an accuracy of 85.64%, 86.65% and 88.79% when 500, 1000 and 2000 RR intervals are utilized, respectively. It demonstrates that HRV evaluation based on deep learning can be an important tool for early detection of CHF, and may assist clinicians in achieving timely and accurate diagnoses.

摘要

充血性心力衰竭(CHF)是一种由心室功能障碍引起的进行性复杂综合征,早期难以检测。心率变异性(HRV)被提议作为CHF的预后指标。受二维UNet++在医学图像分割中成功的启发,本文引入了一种端到端的编码器-解码器模型,用于使用HRV信号检测CHF。所开发的模型通过挤压激励(SE)残差块增强了UNet++模型,以分层提取深度特征,并区分CHF患者和正常受试者。利用两个开源数据库评估所提出的方法,并采用连续R波峰之间的三个间隔段长度与现有方法进行比较。当分别使用500、1000和2000个RR间期时,所提出的方法分别达到了85.64%、86.65%和88.79%的准确率。这表明基于深度学习的HRV评估可以成为早期检测CHF的重要工具,并可能帮助临床医生实现及时准确的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adf4/8002263/593b20e09802/diagnostics-11-00534-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验