Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Chang'an District, Xi'an, Shaanxi 710127, China.
Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Laboratory of Se-enriched Food Development, An' kang, Shaanxi 725000, China.
Mater Sci Eng C Mater Biol Appl. 2021 Apr;123:111968. doi: 10.1016/j.msec.2021.111968. Epub 2021 Feb 16.
In this work, we used a simple method to construct Janus-shaped TiO&mSiO nanoparticles composed of gray-black titanium dioxide (TiO) and mesoporous silica (mSiO) serving as carriers to improve the microwave-controlled release performance. In the composite materials, on one hand, the rod-shaped mSiO could realize high-efficiency drug loading, on the other hand, spherical TiO featuring oxygen vacancy acted as the main microwave absorber. The overall spatial separation between titanium dioxide and silicon dioxide was crucial to enhance microwave conversion efficiency. The Janus-liked nanomaterial was made up of TiO nanosphere with a diameter of approximately 180 nm on one end and rod-shaped mesoporous silica with about 220 nm in length and 100 nm in diameter on the other end, and the specific surface area of the entire material was 203.25 m/g. Meanwhile, the cumulative doxorubicin hydrochloride (DOX) loading rate of the carrier reached up to 38 wt% after 24 h. The loading process of the DOX was exothermic, and the noncovalent interaction between the DOX and Janus TiO&mSiO carrier was mainly van der Waals force. Furthermore, the rates of drug release at 24 h were up to 61 wt%, 69 wt% and 89 wt% at pH 7.0, 5.0 and 3.0, respectively. After microwave stimulation at pH 7.0, the rate of drug release increased observably from 61% to 88% compared to that of non-microwave irradiation. The order of the microwave thermal conversion capability of the samples was Janus TiO&mSiO > Janus TiO&mSiO > core-shell TiO@mSiO. Besides, cytotoxicity tests indicated that Janus TiO&mSiO nanoparticles had good biocompatibility. Therefore, the multifunctional carrier of the Janus-shaped configuration could not only release drugs under pH control, but also be further triggered by microwave stimulation. The Janus-shaped TiO&mSiO nanoparticles will look forward to laying foundation to the application in drug delivery systems.
在这项工作中,我们使用了一种简单的方法构建了具有Janus 结构的 TiO&mSiO 纳米粒子,该纳米粒子由作为载体的灰黑色二氧化钛 (TiO) 和介孔硅 (mSiO) 组成,以提高微波控制释放性能。在复合材料中,一方面,棒状 mSiO 可以实现高效的药物负载,另一方面,具有氧空位的球形 TiO 作为主要的微波吸收剂。二氧化钛和二氧化硅之间的整体空间分离对于提高微波转换效率至关重要。Janus 样纳米材料由一端直径约为 180nm 的 TiO 纳米球和另一端长约 220nm、直径约 100nm 的棒状介孔硅组成,整个材料的比表面积为 203.25m/g。同时,载体的盐酸多柔比星 (DOX) 累积负载率在 24 小时内达到 38wt%。DOX 的加载过程是放热的,DOX 与 Janus TiO&mSiO 载体之间的非共价相互作用主要是范德华力。此外,在 pH 值分别为 7.0、5.0 和 3.0 时,24 小时内药物的释放率分别高达 61wt%、69wt%和 89wt%。在 pH 值为 7.0 时进行微波刺激后,与非微波照射相比,药物释放率从 61%明显增加到 88%。样品的微波热转换能力顺序为 Janus TiO&mSiO>Janus TiO&mSiO>核壳 TiO@mSiO。此外,细胞毒性试验表明 Janus TiO&mSiO 纳米粒子具有良好的生物相容性。因此,Janus 结构的多功能载体不仅可以在 pH 控制下释放药物,还可以进一步通过微波刺激触发。Janus 形 TiO&mSiO 纳米粒子有望为药物传递系统的应用奠定基础。