Najafi Leyla, Bellani Sebastiano, Oropesa-Nuñez Reinier, Martín-García Beatriz, Prato Mirko, Pasquale Lea, Panda Jaya-Kumar, Marvan Petr, Sofer Zdeněk, Bonaccorso Francesco
Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
BeDimensional Spa, via Albisola 121, 16163 Genova, Italy.
ACS Catal. 2020 Mar 6;10(5):3313-3325. doi: 10.1021/acscatal.9b03184. Epub 2020 Feb 10.
Metallic two-dimensional transition-metal dichalcogenides (TMDs) of the group 5 metals are emerging as catalysts for an efficient hydrogen evolution reaction (HER). The HER activity of the group 5 TMDs originates from the unsaturated chalcogen edges and the highly active surface basal planes, whereas the HER activity of the widely studied group 6 TMDs originates solely from the chalcogen- or metal-unsaturated edges. However, the batch production of such nanomaterials and their scalable processing into high-performance electrocatalysts is still challenging. Herein, we report the liquid-phase exfoliation of the 2H-TaS crystals by using 2-propanol to produce single/few-layer (1H/2H) flakes, which are afterward deposited as catalytic films. A thermal treatment-aided texturization of the catalytic films is used to increase their porosity, promoting the ion access to the basal planes of the flakes, as well as the number of catalytic edges of the flakes. The hybridization of the H-TaS flakes and H-TaSe flakes tunes the Gibbs free energy of the adsorbed atomic hydrogen onto the H-TaS basal planes to the optimal thermo-neutral value. In 0.5 M HSO, the heterogeneous catalysts exhibit a low overpotential (versus RHE, reversible hydrogen electrode) at the cathodic current of 10 mA cm (η) of 120 mV and high mass activity of 314 A g at an overpotential of 200 mV. In 1 M KOH, they show a η of 230 mV and a mass activity of 220 A g at an overpotential of 300 mV. Our results provide new insight into the usage of the metallic group 5 TMDs for the HER through scalable material preparation and electrode processing.
第5族金属的金属二维过渡金属二硫属化物(TMDs)正在成为高效析氢反应(HER)的催化剂。第5族TMDs的HER活性源于不饱和硫属元素边缘和高活性的表面基面,而广泛研究的第6族TMDs的HER活性仅源于硫属元素或金属不饱和边缘。然而,批量生产此类纳米材料并将其可扩展加工成高性能电催化剂仍然具有挑战性。在此,我们报告了通过使用2-丙醇对2H-TaS晶体进行液相剥离以制备单/少层(1H/2H)薄片,随后将其沉积为催化膜。对催化膜进行热处理辅助织构化以增加其孔隙率,促进离子进入薄片的基面以及薄片催化边缘的数量。H-TaS薄片和H-TaSe薄片的杂化将吸附在H-TaS基面上的原子氢的吉布斯自由能调节到最佳热中性值。在0.5 M HSO中,非均相催化剂在10 mA cm的阴极电流下表现出低过电位(相对于RHE,可逆氢电极)(η)为120 mV,在200 mV过电位下具有314 A g的高质量活性。在1 M KOH中,它们在300 mV过电位下显示出η为230 mV和质量活性为220 A g。我们的结果通过可扩展的材料制备和电极加工为第5族金属TMDs用于HER的应用提供了新的见解。