Suppr超能文献

基于数据的复杂性-因果关系测度干预方法。

Data-based intervention approach for Complexity-Causality measure.

作者信息

Kathpalia Aditi, Nagaraj Nithin

机构信息

Consciousness Studies Programme, National Institute of Advanced Studies, Bengaluru, Karnataka, India.

出版信息

PeerJ Comput Sci. 2019 May 27;5:e196. doi: 10.7717/peerj-cs.196. eCollection 2019.

Abstract

Causality testing methods are being widely used in various disciplines of science. Model-free methods for causality estimation are very useful, as the underlying model generating the data is often unknown. However, existing model-free/data-driven measures assume separability of cause and effect at the level of individual samples of measurements and unlike model-based methods do not perform any intervention to learn causal relationships. These measures can thus only capture causality which is by the associational occurrence of 'cause' and 'effect' between well separated samples. In real-world processes, often 'cause' and 'effect' are inherently inseparable or become inseparable in the acquired measurements. We propose a novel measure that uses an adaptive interventional scheme to capture causality which is not merely associational. The scheme is based on characterizing complexities associated with the dynamical evolution of processes on short windows of measurements. The formulated measure, Compression-Complexity Causality is rigorously tested on simulated and real datasets and its performance is compared with that of existing measures such as Granger Causality and Transfer Entropy. The proposed measure is robust to the presence of noise, long-term memory, filtering and decimation, low temporal resolution (including aliasing), non-uniform sampling, finite length signals and presence of common driving variables. Our measure outperforms existing state-of-the-art measures, establishing itself as an effective tool for causality testing in real world applications.

摘要

因果关系测试方法正在科学的各个学科中广泛使用。用于因果关系估计的无模型方法非常有用,因为生成数据的潜在模型通常是未知的。然而,现有的无模型/数据驱动方法假设在测量的单个样本层面上原因和结果是可分离的,并且与基于模型的方法不同,它们不进行任何干预来学习因果关系。因此,这些方法只能捕捉到在分离良好的样本之间通过“原因”和“结果”的关联出现而产生的因果关系。在现实世界的过程中,“原因”和“结果”往往在本质上是不可分离的,或者在获取的测量中变得不可分离。我们提出了一种新颖的方法,该方法使用自适应干预方案来捕捉不仅仅是关联性的因果关系。该方案基于表征与测量短窗口上过程的动态演化相关的复杂性。所制定的度量标准,即压缩复杂性因果关系,在模拟数据集和真实数据集上进行了严格测试,并将其性能与现有度量标准(如格兰杰因果关系和转移熵)进行了比较。所提出的度量标准对于噪声、长期记忆、滤波和抽取、低时间分辨率(包括混叠)、非均匀采样、有限长度信号以及共同驱动变量的存在具有鲁棒性。我们的度量标准优于现有的最先进度量标准,确立了其作为现实世界应用中因果关系测试的有效工具的地位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6584/7924450/73085182a56b/peerj-cs-05-196-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验